opencv实现xld_使用OpenCV进行简单的人像分割与合成

2023-10-25 10:59

本文主要是介绍opencv实现xld_使用OpenCV进行简单的人像分割与合成,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

图像合成

实现思路

通过背景建模的方法,对源图像中的动态人物前景进行分割,再将目标图像作为背景,进行合成操作,获得一个可用的合成影像。

实现步骤如下。

使用BackgroundSubtractorMOG2进行背景分割

BackgroundSubtractorMOG2是一个以高斯混合模型为基础的背景前景分割算法,

混合高斯模型

equation?tex=p%28x%29%3D%5Csum_%7Bi%3D1%7D%5E%7BK%7D%7B%5Cphi_%7Bi%7D%7D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%5Csigma_%7Bi%7D%5E%7B2%7D%5Cpi%7D%7De%5E%7B-%5Cfrac%7B%28x-%5Cmu_%7Bi%7D%29%5E%7B2%7D%7D%7B2%5Csigma_%7Bi%7D%5E%7B2%7D%7D%7D

分布概率是K个高斯分布的和,每个高斯分布有属于自己的 \(\mu\) 和 \(\sigma\) 参数,以及对应的权重参数,权重值必须为正数,所有权重的和必须等于1,以确保公式给出数值是合理的概率密度值。换句话说如果我们把该公式对应的输入空间合并起来,结果将等于1。

回到原算法,它的一个特点是它为每一个像素选择一个合适数目的高斯分布。基于高斯模型的期望和标准差来判断混合高斯模型模型中的哪个高斯模型更有可能对应这个像素点,如果不符合就会被判定为前景。

使用人像识别填充面部信息

创建级联分类器

face_cascade = cv2.CascadeClassifier()

face_cascade.load(

'/usr/local/anaconda3/envs/OpenCV/lib/python3.8/site-packages/cv2/data/haarcascade_frontalface_default.xml')

使用OpenCV自带的级联分类器,加载OpenCV的基础人像识别数据。

识别源图像中的人像

faces = face_cascade.detectMultiScale(gray, 1.3, 5)

使用形态学填充分割出来的前景

# 形态学开运算去噪点

fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel)

for i in range(15):

fgmask = cv2.dilate(fgmask, kernel, iterations=1)

通过开操作去掉前景图像数组中的噪点,然后重复进行膨胀,填充前景轮廓。

将人像与目标背景进行合成

def resolve(o_img, mask, faces):

if len(faces) == 0:

return

(x, y, w, h) = faces[0]

rgb_mask_front = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)

rgb_mask_front = cv2.bitwise_not(rgb_mask_front)

cv2.circle(rgb_mask_front, (int(x + w / 2), int(y + h / 2)), int((w + h) / 4), (0, 0, 0), thickness=-1)

o_img = cv2.subtract(o_img, rgb_mask_front)

return o_img

将分割出来的部分取反再与源图像进行减操作,相当于用一个Mask从原图中抠出一部分。

再与背景进行加操作

out = resolve(frame, fgmask, faces)

out = cv2.add(out, c_frame)

代码实现

import numpy as np

import cv2

import os

# 经典的测试视频

camera = cv2.VideoCapture('./source/background_test2.avi')

cap = cv2.VideoCapture('./source/camera_test2.avi')

face_cascade = cv2.CascadeClassifier()

face_cascade.load(

os.getcwd()+'/source/haarcascade_frontalface_default.xml')

# 形态学操作需要使用

kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))

# 创建混合高斯模型用于背景建模

fgbg = cv2.createBackgroundSubtractorMOG2(detectShadows=False)

def resolve(o_img, mask, faces):

if len(faces) == 0:

return

(x, y, w, h) = faces[0]

rgb_mask_front = cv2.cvtColor(mask, cv2.COLOR_GRAY2BGR)

rgb_mask_front = cv2.bitwise_not(rgb_mask_front)

cv2.circle(rgb_mask_front, (int(x + w / 2), int(y + h / 2)), int((w + h) / 4), (0, 0, 0), thickness=-1)

o_img = cv2.subtract(o_img, rgb_mask_front)

return o_img

while True:

ret, frame = cap.read()

c_ret, c_frame = camera.read()

gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

fgmask = fgbg.apply(frame)

# 形态学开运算去噪点

fgmask = cv2.morphologyEx(fgmask, cv2.MORPH_OPEN, kernel)

gray_camera = cv2.cvtColor(c_frame, cv2.COLOR_BGR2GRAY)

for i in range(15):

fgmask = cv2.dilate(fgmask, kernel, iterations=1)

faces = face_cascade.detectMultiScale(gray, 1.3, 5)

out = resolve(frame, fgmask, faces)

out = cv2.add(out, c_frame)

cv2.imshow('Result', out)

cv2.imshow('Mask', fgmask)

k = cv2.waitKey(150) & 0xff

if k == 27:

break

out.release()

camera.release()

cap.release()

cv2.destroyAllWindows()

这篇关于opencv实现xld_使用OpenCV进行简单的人像分割与合成的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/282098

相关文章

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

SpringBoot实现微信小程序支付功能

《SpringBoot实现微信小程序支付功能》小程序支付功能已成为众多应用的核心需求之一,本文主要介绍了SpringBoot实现微信小程序支付功能,文中通过示例代码介绍的非常详细,对大家的学习或者工作... 目录一、引言二、准备工作(一)微信支付商户平台配置(二)Spring Boot项目搭建(三)配置文件

鸿蒙中@State的原理使用详解(HarmonyOS 5)

《鸿蒙中@State的原理使用详解(HarmonyOS5)》@State是HarmonyOSArkTS框架中用于管理组件状态的核心装饰器,其核心作用是实现数据驱动UI的响应式编程模式,本文给大家介绍... 目录一、@State在鸿蒙中是做什么的?二、@Spythontate的基本原理1. 依赖关系的收集2.

Python基础语法中defaultdict的使用小结

《Python基础语法中defaultdict的使用小结》Python的defaultdict是collections模块中提供的一种特殊的字典类型,它与普通的字典(dict)有着相似的功能,本文主要... 目录示例1示例2python的defaultdict是collections模块中提供的一种特殊的字

基于Python实现高效PPT转图片工具

《基于Python实现高效PPT转图片工具》在日常工作中,PPT是我们常用的演示工具,但有时候我们需要将PPT的内容提取为图片格式以便于展示或保存,所以本文将用Python实现PPT转PNG工具,希望... 目录1. 概述2. 功能使用2.1 安装依赖2.2 使用步骤2.3 代码实现2.4 GUI界面3.效

MySQL更新某个字段拼接固定字符串的实现

《MySQL更新某个字段拼接固定字符串的实现》在MySQL中,我们经常需要对数据库中的某个字段进行更新操作,本文就来介绍一下MySQL更新某个字段拼接固定字符串的实现,感兴趣的可以了解一下... 目录1. 查看字段当前值2. 更新字段拼接固定字符串3. 验证更新结果mysql更新某个字段拼接固定字符串 -

java实现延迟/超时/定时问题

《java实现延迟/超时/定时问题》:本文主要介绍java实现延迟/超时/定时问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java实现延迟/超时/定时java 每间隔5秒执行一次,一共执行5次然后结束scheduleAtFixedRate 和 schedu

Java Optional避免空指针异常的实现

《JavaOptional避免空指针异常的实现》空指针异常一直是困扰开发者的常见问题之一,本文主要介绍了JavaOptional避免空指针异常的实现,帮助开发者编写更健壮、可读性更高的代码,减少因... 目录一、Optional 概述二、Optional 的创建三、Optional 的常用方法四、Optio

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

在Android平台上实现消息推送功能

《在Android平台上实现消息推送功能》随着移动互联网应用的飞速发展,消息推送已成为移动应用中不可或缺的功能,在Android平台上,实现消息推送涉及到服务端的消息发送、客户端的消息接收、通知渠道(... 目录一、项目概述二、相关知识介绍2.1 消息推送的基本原理2.2 Firebase Cloud Me