Spark Streaming中,增大任务并发度的方法有哪些?

2023-10-25 04:50

本文主要是介绍Spark Streaming中,增大任务并发度的方法有哪些?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Spark Streaming中,增大任务并发度的方法有哪些?


0 准备阶段

Q: 在Spark集群中,集群的节点个数、RDD分区个数、CPU内核个数三者与并行度的关系是什么?

我们先梳理一下Spark中关于并发度涉及的几个概念: File, Block, Split, Task, Partition, RDD以及节点数、Executor数、core数目的关系。




  1. 输入可能以多个文件的形式存储在HDFS上,每个File都包括了很多Block。
  2. 当Spark读取这些文件作为输入时,会根据具体数据格式对应的InputFormat进行解析,一般是将若干个Block合并成一个输入分片(InputSplit),注意InputSplit不能跨越文件。
  3. 随后将为这些输入分片生成具体的Task。InputSplit与Task是一一对应的关系。
  4. 这些具体的Task,每个都会被分配到集群上的某个节点的某个Executor去执行。
  • 每个节点可以起一个或多个Executor。
  • 每个Executor由若干core组成,每个Executor的每个core一次只能执行一个Task。
  • 每个Task执行的结果就是生成了目标RDD的一个partition。

Note:
这里的core是虚拟的core而不是机器的物理CPU核,可以理解为Executor的一个工作线程。

Task被执行的并发度 = Executor数目 * 每个Executor核数

至于partition的数目:
  • 对于数据读入阶段,例如: sc.textFile,输入文件被划分为多少InputSplit就会需要多少初始Task。
  • 在Map阶段,partition数目保持不变。
  • 在Reduce阶段,RDD的聚合会出发shuffle操作,聚合后的RDD的partition数目跟具体操作有关。例如:repartition操作会聚合成指定分区数,还有一些算子是可配置的。

1 Spark Streaming增大任务并发度
Q: 在Spark Streaming中,增大任务并发度的方法有哪些?
A: s1 core的个数: task线程数,也就是--executor-cores
      s2 repartition
      s3 Streaming + Kafka,Direct方式,则增加partition分区数
      s4 Streaming + Kafka,Receiver方式,则增加Receiver个数
      s5 reduceByKey和reduceByKeyAndWindow传入第二个参数

1.1 解析

s1 & s2: 
RDD在计算的时候,每个分区都会起一个task,所以RDD的分区数目决定了总的task数据。
申请的计算节点(Executor)数目和每个计算节点核数,决定了你同一时刻可以并行执行的task。
e g:
RDD有100个分区,那么计算的时候就会生成100个task,你的资源配置为10个计算节点,每个2个核,同一时刻可以并行的task数目为20,计算这个RDD就需要5个轮次。
如果计算资源不变,你有101个task的话,就需要6个轮次,在最后一轮中,只有一个task在执行,其余核都在空转。
如果资源不变,你的RDD只有两个分区,那么同一时刻只有2个task运行,其余18个核空转,造成资源浪费。
这就是在Spark调优中,通过增大RDD分区数目,进而增大任务并行度的做法。

s5:
如果在计算的任何stage中使用的并行task的数量没有足够多,那么集群资源是无法被充分利用的。举例来说,对于分布式的reduce操作,比如reduceByKey和reduceByKeyAndWindow,默认的并行task的数量是由spark.default.parallelism参数决定的。你可以在reduceByKey等操作中,传入第二个参数,手动指定该操作的并行度,也可以调节全局的spark.default.parallelism参数。

1.2 增大kafka中的partition可以增加Spark在处理数据上的并行度吗?

s4:
在Receiver的方式中,Spark中的partition和Kafka中的partition并不是相关的,所以如果我们加大每个topic的partition数量,仅仅是增加线程来处理由单一Receiver消费的主题。但是这并没有增加Spark在处理数据上的并行度。但是,该方式下,一个Receiver就对应于一个partition,所以,可以通过增加Receiver的个数来增大Spark任务并行度。

s3:
而在Direct方式中,Kafka中的partition与RDD中的partition是一一对应的并行读取Kafka数据,这种映射关系也更利于理解和优化。


Reference Link

[1] Spark Streaming和Kafka整合开发指南(一): https://www.iteblog.com/archives/1322.html

[2] Spark Streaming和Kafka整合开发指南(二):https://www.iteblog.com/archives/1326.html

[3] Spark Streaming性能调优详解: https://www.cnblogs.com/gaopeng527/p/4961701.html

[4] Spark Streaming:性能调优 http://blog.csdn.net/kwu_ganymede/article/details/50577920

[5] Spark踩坑记 —— Spark Streaming + Kafka https://www.cnblogs.com/xlturing/p/6246538.html

这篇关于Spark Streaming中,增大任务并发度的方法有哪些?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/280127

相关文章

Idea实现接口的方法上无法添加@Override注解的解决方案

《Idea实现接口的方法上无法添加@Override注解的解决方案》文章介绍了在IDEA中实现接口方法时无法添加@Override注解的问题及其解决方法,主要步骤包括更改项目结构中的Languagel... 目录Idea实现接China编程口的方法上无法添加@javascriptOverride注解错误原因解决方

MySql死锁怎么排查的方法实现

《MySql死锁怎么排查的方法实现》本文主要介绍了MySql死锁怎么排查的方法实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录前言一、死锁排查方法1. 查看死锁日志方法 1:启用死锁日志输出方法 2:检查 mysql 错误

Java通过反射获取方法参数名的方式小结

《Java通过反射获取方法参数名的方式小结》这篇文章主要为大家详细介绍了Java如何通过反射获取方法参数名的方式,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、前言2、解决方式方式2.1: 添加编译参数配置 -parameters方式2.2: 使用Spring的内部工具类 -

c++中std::placeholders的使用方法

《c++中std::placeholders的使用方法》std::placeholders是C++标准库中的一个工具,用于在函数对象绑定时创建占位符,本文就来详细的介绍一下,具有一定的参考价值,感兴... 目录1. 基本概念2. 使用场景3. 示例示例 1:部分参数绑定示例 2:参数重排序4. 注意事项5.

Windows设置nginx启动端口的方法

《Windows设置nginx启动端口的方法》在服务器配置与开发过程中,nginx作为一款高效的HTTP和反向代理服务器,被广泛应用,而在Windows系统中,合理设置nginx的启动端口,是确保其正... 目录一、为什么要设置 nginx 启动端口二、设置步骤三、常见问题及解决一、为什么要设置 nginx

树莓派启动python的实现方法

《树莓派启动python的实现方法》本文主要介绍了树莓派启动python的实现方法,文中通过图文介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录一、RASPBerry系统设置二、使用sandroidsh连接上开发板Raspberry Pi三、运

查询SQL Server数据库服务器IP地址的多种有效方法

《查询SQLServer数据库服务器IP地址的多种有效方法》作为数据库管理员或开发人员,了解如何查询SQLServer数据库服务器的IP地址是一项重要技能,本文将介绍几种简单而有效的方法,帮助你轻松... 目录使用T-SQL查询方法1:使用系统函数方法2:使用系统视图使用SQL Server Configu

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

Redis存储的列表分页和检索的实现方法

《Redis存储的列表分页和检索的实现方法》在Redis中,列表(List)是一种有序的数据结构,通常用于存储一系列元素,由于列表是有序的,可以通过索引来访问元素,因此可以很方便地实现分页和检索功能,... 目录一、Redis 列表的基本操作二、分页实现三、检索实现3.1 方法 1:客户端过滤3.2 方法

Python实现视频转换为音频的方法详解

《Python实现视频转换为音频的方法详解》这篇文章主要为大家详细Python如何将视频转换为音频并将音频文件保存到特定文件夹下,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果5. 注意事项