HDU 2897 邂逅明下(巴什博弈变形)

2023-10-25 04:38

本文主要是介绍HDU 2897 邂逅明下(巴什博弈变形),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

                                     HDU 2897 邂逅明下

当日遇到月,于是有了明。当我遇到了你,便成了侣。 
那天,日月相会,我见到了你。而且,大地失去了光辉,你我是否成侣?这注定是个凄美的故事。(以上是废话) 
小t和所有世俗的人们一样,期待那百年难遇的日食。驻足街头看天,看日月渐渐走近,小t的脖子那个酸呀(他坚持这个姿势已经有半个多小时啦)。他低下仰起的头,环顾四周。忽然发现身边竟站着位漂亮的mm。天渐渐暗下,这mm在这街头竟然如此耀眼,她是天使吗?站着小t身边的天使。 
小t对mm惊呼:“缘分呐~~”。mm却毫不含糊:“是啊,500年一遇哦!”(此后省略5000字….) 
小t赶紧向mm要联系方式,可mm说:“我和你玩个游戏吧,赢了,我就把我的手机号告诉你。”小t,心想天下哪有题目能难倒我呢,便满口答应下来。mm开始说游戏规则:“我有一堆硬币,一共7枚,从这个硬币堆里取硬币,一次最少取2枚,最多4枚,如果剩下少于2枚就要一次取完。我和你轮流取,直到堆里的硬币取完,最后一次取硬币的算输。我玩过这个游戏好多次了,就让让你,让你先取吧~” 
小t掐指一算,不对呀,这是不可能的任务么。小t露出得意的笑:“还是mm优先啦,呵呵~”mm霎时愣住了,想是对小t的反应出乎意料吧。 
她却也不生气:“好小子,挺聪明呢,要不这样吧,你把我的邮箱给我,我给你发个文本,每行有三个数字n,p,q,表示一堆硬币一共有n枚,从这个硬币堆里取硬币,一次最少取p枚,最多q枚,如果剩下少于p枚就要一次取完。两人轮流取,直到堆里的硬币取完,最后一次取硬币的算输。对于每一行的三个数字,给出先取的人是否有必胜策略,如果有回答WIN,否则回答LOST。你把对应的答案发给我,如果你能在今天晚上8点以前发给我正确答案,或许我们明天下午可以再见。” 
小t二话没说,将自己的邮箱给了mm。当他兴冲冲得赶回家,上网看邮箱,哇!mm的邮件已经到了。他发现文本长达100000行,每行的三个数字都很大,但是都是不超过65536的整数。小t看表已经下午6点了,要想手工算出所有结果,看来是不可能了。你能帮帮他,让他再见到那个mm吗? 

Input

不超过100000行,每行三个正整数n,p,q。

Output

对应每行输入,按前面介绍的游戏规则,判断先取者是否有必胜策略。输出WIN或者LOST。

Sample Input

7 2 4
6 2 4

Sample Output

LOST
WIN

 

看到取值范围在p、q之间的时候,毫不犹豫的就写了一个SG函数来解决问题(最初的SG【0】赋值为1,1~p之间的数的SG初始化值赋值为0表示必输点)结果T了,看来这道题得找规律做,所以写的对不对也不知道,先贴上来。


#include <bits\stdc++.h>
using namespace std;int f[65537],sg[65537],vis[65537];void getsg(int a,int b,int n)
{sg[0]=1;for(int i=1;i<=a;i++)sg[i]=0;for(int i=a+1;i<=n;i++){memset(vis,0,sizeof(vis));for(int j=0;j<=b&&i>=f[j];j++){vis[sg[i-f[j]]]=1;}for(int j=0;;j++)if(!vis[j]){sg[i]=j;break;}}
}int main()
{int a,b,c;while(scanf("%d%d%d",&a,&b,&c)!=EOF){int cont=0;for(int i=b;i<=c;i++,cont++)f[cont]=i;getsg(b,c-b,a);if(sg[a]) printf("WIN\n");else printf("LOST\n");}return 0;
}

然后题解发现其实巴什博弈的变形(取值有最小要求)也可以用与巴什博弈一样的思路。其实应该叫巴什博弈的拓展,因为巴什博弈完全是适用于这个式子的(这里暂时讨论最先取完的人获胜,与题目相反):n%(p+q)的值同p比较,若大于等于p或等于0,则后手必胜,若大于0且小于p则先手必胜(巴什博弈即令p=1)。

这道题的话,是反过来,先取完的人输,那么n%(p+q)的值同p比较,若大于p或等于0,则先手必胜,若大于0且小于等于p则后手必胜

在巴什博弈中,若先取完获胜,则用(n-1)%(m+1)看是否等于0

若当前石子共有n =(p+q)* r个,则A必胜,必胜策略为:A第一次取q个,以后每次若B取K个,A取(p+q-k)个,如此下去最后必剩下p个给B,所以A必胜。


若n =(p+q)* r + left个(1< left <= p)B必胜,必胜策略为:每次取石子活动中,若A取k个,则B去(p+q-k)个,那么最后剩下left个给A,此时left <= p,所以A只能一次去完,B胜。


若n =(p+q)* r + left个(p < left <= q),则A必胜,必胜策略为:A第一次取t(1<left – t <= p)个,以后每次B取k个,则A取(p+q-k)个,那么最后留下1< left – t <=p给B,则A胜。

#include <bits\stdc++.h>
using namespace std;int main()
{int a,b,c;while(scanf("%d%d%d",&a,&b,&c)!=EOF){if(a%(b+c)<=b&&a%(b+c)>0) printf("LOST\n");else printf("WIN\n");}return 0;
}

 

这篇关于HDU 2897 邂逅明下(巴什博弈变形)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/280071

相关文章

csu(背包的变形题)

题目链接 这是一道背包的变形题目。好题呀 题意:给n个怪物,m个人,每个人的魔法消耗和魔法伤害不同,求打死所有怪物所需的魔法 #include<iostream>#include<algorithm>#include<cstring>#include<stack>#include<queue>#include<set>//#include<u>#include<map

poj2505(典型博弈)

题意:n = 1,输入一个k,每一次n可以乘以[2,9]中的任何一个数字,两个玩家轮流操作,谁先使得n >= k就胜出 这道题目感觉还不错,自己做了好久都没做出来,然后看了解题才理解的。 解题思路:能进入必败态的状态时必胜态,只能到达胜态的状态为必败态,当n >= K是必败态,[ceil(k/9.0),k-1]是必胜态, [ceil(ceil(k/9.0)/2.0),ceil(k/9.

hdu3389(阶梯博弈变形)

题意:有n个盒子,编号1----n,每个盒子内有一些小球(可以为空),选择一个盒子A,将A中的若干个球移到B中,满足条件B  < A;(A+B)%2=1;(A+B)%3=0 这是阶梯博弈的变形。 先介绍下阶梯博弈: 在一个阶梯有若干层,每层上放着一些小球,两名选手轮流选择一层上的若干(不能为0)小球从上往下移动,最后一次移动的胜出(最终状态小球都在地面上) 如上图所示,小球数目依次为

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

hdu 2093 考试排名(sscanf)

模拟题。 直接从教程里拉解析。 因为表格里的数据格式不统一。有时候有"()",有时候又没有。而它也不会给我们提示。 这种情况下,就只能它它们统一看作字符串来处理了。现在就请出我们的主角sscanf()! sscanf 语法: #include int sscanf( const char *buffer, const char *format, ... ); 函数sscanf()和

hdu 2602 and poj 3624(01背包)

01背包的模板题。 hdu2602代码: #include<stdio.h>#include<string.h>const int MaxN = 1001;int max(int a, int b){return a > b ? a : b;}int w[MaxN];int v[MaxN];int dp[MaxN];int main(){int T;int N, V;s

hdu 1754 I Hate It(线段树,单点更新,区间最值)

题意是求一个线段中的最大数。 线段树的模板题,试用了一下交大的模板。效率有点略低。 代码: #include <stdio.h>#include <string.h>#define TREE_SIZE (1 << (20))//const int TREE_SIZE = 200000 + 10;int max(int a, int b){return a > b ? a :

hdu 1166 敌兵布阵(树状数组 or 线段树)

题意是求一个线段的和,在线段上可以进行加减的修改。 树状数组的模板题。 代码: #include <stdio.h>#include <string.h>const int maxn = 50000 + 1;int c[maxn];int n;int lowbit(int x){return x & -x;}void add(int x, int num){while

hdu 3790 (单源最短路dijkstra)

题意: 每条边都有长度d 和花费p,给你起点s 终点t,要求输出起点到终点的最短距离及其花费,如果最短距离有多条路线,则输出花费最少的。 解析: 考察对dijkstra的理解。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstrin