惊为天人,NumPy手写全部主流机器学习模型,代码超3万行

本文主要是介绍惊为天人,NumPy手写全部主流机器学习模型,代码超3万行,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

点击上方“小白学视觉”,选择加"星标"或“置顶

重磅干货,第一时间送达

本文转自 | 深度学习这件小事

用 NumPy 手写所有主流 ML 模型,普林斯顿博士后 David Bourgin 最近开源了一个非常剽悍的项目。超过 3 万行代码、30 多个模型,这也许能打造「最强」的机器学习基石?

NumPy 作为 Python 生态中最受欢迎的科学计算包,很多读者已经非常熟悉它了。它为 Python 提供高效率的多维数组计算,并提供了一系列高等数学函数,我们可以快速搭建模型的整个计算流程。毫不负责任地说,NumPy 就是现代深度学习框架的「爸爸」。

尽管目前使用 NumPy 写模型已经不是主流,但这种方式依然不失为是理解底层架构和深度学习原理的好方法。最近,来自普林斯顿的一位博士后将 NumPy 实现的所有机器学习模型全部开源,并提供了相应的论文和一些实现的测试效果。

  • 项目地址:https://github.com/ddbourgin/numpy-ml

根据机器之心的粗略估计,该项目大约有 30 个主要机器学习模型,此外还有 15 个用于预处理和计算的小工具,全部.py 文件数量有 62 个之多。平均每个模型的代码行数在 500 行以上,在神经网络模型的 layer.py 文件中,代码行数接近 4000。

这,应该是目前用 NumPy 手写机器学习模型的「最高境界」吧。

谁用 NumPy 手推了一大波 ML 模型

通过项目的代码目录,我们能发现,作者基本上把主流模型都实现了一遍,这个工作量简直惊为天人。我们发现作者 David Bourgin 也是一位大神,他于 2018 年获得加州大学伯克利分校计算认知科学博士学位,随后在普林斯顿大学从事博士后研究。

尽管毕业不久,David 在顶级期刊与计算机会议上都发表了一些优秀论文。在最近结束的 ICML 2019 中,其关于认知模型先验的研究就被接收为少有的 Oral 论文。

David Bourgin 小哥哥就是用 NumPy 手写 ML 模型、手推反向传播的大神。这么多的工作量,当然还是需要很多参考资源的,David 会理解这些资源或实现,并以一种更易读的方式写出来。

正如 reddit 读者所质疑的:在 autograd repo 中已经有很多这样的例子,为什么你还要做这个项目?

作者表示,他的确从 autograd repo 学到了很多,但二者的不同之处在于,他显式地进行了所有梯度计算,以突出概念/数学的清晰性。当然,这么做的缺点也很明显,在每次需要微分一个新函数时,你都要写出它的公式……

估计 David Bourgin 小哥哥在写完这个项目后,机器学习基础已经极其牢固了。最后,David 表示下一步会添加文档和示例,以方便大家使用。

项目总体介绍

这个项目最大的特点是作者把机器学习模型都用 NumPy 手写了一遍,包括更显式的梯度计算和反向传播过程。可以说它就是一个机器学习框架了,只不过代码可读性会强很多。

David Bourgin 表示他一直在慢慢写或收集不同模型与模块的纯 NumPy 实现,它们跑起来可能没那么快,但是模型的具体过程一定足够直观。每当我们想了解模型 API 背后的实现,却又不想看复杂的框架代码,那么它可以作为快速的参考。

文章后面会具体介绍整个项目都有什么模型,这里先简要介绍它的整体结构。如下所示为项目文件,不同的文件夹即不同种类的代码集。

在每一个代码集下,作者都会提供不同实现的参考资料,例如模型的效果示例图、参考论文和参考链接等。如下所示,David 在实现神经网络层级的过程中,还提供了参考论文。

当然如此庞大的代码总会存在一些 Bug,作者也非常希望我们能一起完善这些实现。如果我们以前用纯 NumPy 实现过某些好玩的模型,那也可以直接提交 PR 请求。因为实现基本上都只依赖于 NumPy,那么环境配置就简单很多了,大家差不多都能跑得动。

手写 NumPy 全家福

作者在 GitHub 中提供了模型/模块的实现列表,列表结构基本就是代码文件的结构了。整体上,模型主要分为两部分,即传统机器学习模型与主流的深度学习模型。

其中浅层模型既有隐马尔可夫模型和提升方法这样的复杂模型,也包含了线性回归或最近邻等经典方法。而深度模型则主要从各种模块、层级、损失函数、最优化器等角度搭建代码架构,从而能快速构建各种神经网络。

除了模型外,整个项目还有一些辅助模块,包括一堆预处理相关的组件和有用的小工具。

该 repo 的模型或代码结构如下所示:

1. 高斯混合模型

  • EM 训练

2. 隐马尔可夫模型

  • 维特比解码

  • 似然计算

  • 通过 Baum-Welch/forward-backward 算法进行 MLE 参数估计

3. 隐狄利克雷分配模型(主题模型)

  • 用变分 EM 进行 MLE 参数估计的标准模型

  • 用 MCMC 进行 MAP 参数估计的平滑模型

4. 神经网络

4.1 层/层级运算

  • Add

  • Flatten

  • Multiply

  • Softmax

  • 全连接/Dense

  • 稀疏进化连接

  • LSTM

  • Elman 风格的 RNN

  • 最大+平均池化

  • 点积注意力

  • 受限玻尔兹曼机 (w. CD-n training)

  • 2D 转置卷积 (w. padding 和 stride)

  • 2D 卷积 (w. padding、dilation 和 stride)

  • 1D 卷积 (w. padding、dilation、stride 和 causality)

4.2 模块

  • 双向 LSTM

  • ResNet 风格的残差块(恒等变换和卷积)

  • WaveNet 风格的残差块(带有扩张因果卷积)

  • Transformer 风格的多头缩放点积注意力

4.3 正则化项

  • Dropout

  • 归一化

  • 批归一化(时间上和空间上)

  • 层归一化(时间上和空间上)

4.4 优化器

  • SGD w/ 动量

  • AdaGrad

  • RMSProp

  • Adam

4.5 学习率调度器

  • 常数

  • 指数

  • Noam/Transformer

  • Dlib 调度器

4.6 权重初始化器

  • Glorot/Xavier uniform 和 normal

  • He/Kaiming uniform 和 normal

  • 标准和截断正态分布初始化

4.7 损失

  • 交叉熵

  • 平方差

  • Bernoulli VAE 损失

  • 带有梯度惩罚的 Wasserstein 损失

4.8 激活函数

  • ReLU

  • Tanh

  • Affine

  • Sigmoid

  • Leaky ReLU

4.9 模型

  • Bernoulli 变分自编码器

  • 带有梯度惩罚的 Wasserstein GAN

4.10 神经网络工具

  • col2im (MATLAB 端口)

  • im2col (MATLAB 端口)

  • conv1D

  • conv2D

  • deconv2D

  • minibatch

5. 基于树的模型

  • 决策树 (CART)

  • [Bagging] 随机森林

  • [Boosting] 梯度提升决策树

6. 线性模型

  • 岭回归

  • Logistic 回归

  • 最小二乘法

  • 贝叶斯线性回归 w/共轭先验

7.n 元序列模型

  • 最大似然得分

  • Additive/Lidstone 平滑

  • 简单 Good-Turing 平滑

8. 强化学习模型

  • 使用交叉熵方法的智能体

  • 首次访问 on-policy 蒙特卡罗智能体

  • 加权增量重要采样蒙特卡罗智能体

  • Expected SARSA 智能体

  • TD-0 Q-learning 智能体

  • Dyna-Q / Dyna-Q+ 优先扫描

9. 非参数模型

  • Nadaraya-Watson 核回归

  • k 最近邻分类与回归

10. 预处理

  • 离散傅立叶变换 (1D 信号)

  • 双线性插值 (2D 信号)

  • 最近邻插值 (1D 和 2D 信号)

  • 自相关 (1D 信号)

  • 信号窗口

  • 文本分词

  • 特征哈希

  • 特征标准化

  • One-hot 编码/解码

  • Huffman 编码/解码

  • 词频逆文档频率编码

11. 工具

  • 相似度核

  • 距离度量

  • 优先级队列

  • Ball tree 数据结构

项目示例

由于代码量庞大,机器之心在这里整理了一些示例。

例如,实现点积注意力机制:

class DotProductAttention(LayerBase):def __init__(self, scale=True, dropout_p=0, init="glorot_uniform", optimizer=None):super().__init__(optimizer)self.init = initself.scale = scaleself.dropout_p = dropout_pself.optimizer = self.optimizerself._init_params()def _fwd(self, Q, K, V):scale = 1 / np.sqrt(Q.shape[-1]) if self.scale else 1scores = Q @ K.swapaxes(-2, -1) * scale  # attention scoresweights = self.softmax.forward(scores)  # attention weightsY = weights @ Vreturn Y, weightsdef _bwd(self, dy, q, k, v, weights):d_k = k.shape[-1]scale = 1 / np.sqrt(d_k) if self.scale else 1dV = weights.swapaxes(-2, -1) @ dydWeights = dy @ v.swapaxes(-2, -1)dScores = self.softmax.backward(dWeights)dQ = dScores @ k * scaledK = dScores.swapaxes(-2, -1) @ q * scalereturn dQ, dK, dV

在以上代码中,Q、K、V 三个向量输入到「_fwd」函数中,用于计算每个向量的注意力分数,并通过 softmax 的方式得到权重。而「_bwd」函数则计算 V、注意力权重、注意力分数、Q 和 K 的梯度,用于更新网络权重。

在一些实现中,作者也进行了测试,并给出了测试结果。如图为隐狄利克雷(Latent Dirichlet allocation,LDA)实现进行文本聚类的结果。左图为词语在特定主题中的分布热力图。右图则为文档在特定主题中的分布热力图。

图注:隐狄利克雷分布实现的效果。

— 完 —

下载1:OpenCV-Contrib扩展模块中文版教程

在「小白学视觉」公众号后台回复:扩展模块中文教程即可下载全网第一份OpenCV扩展模块教程中文版,涵盖扩展模块安装、SFM算法、立体视觉、目标跟踪、生物视觉、超分辨率处理等二十多章内容。

下载2:Python视觉实战项目52讲

在「小白学视觉」公众号后台回复:Python视觉实战项目即可下载包括图像分割、口罩检测、车道线检测、车辆计数、添加眼线、车牌识别、字符识别、情绪检测、文本内容提取、面部识别等31个视觉实战项目,助力快速学校计算机视觉。

下载3:OpenCV实战项目20讲

在「小白学视觉」公众号后台回复:OpenCV实战项目20讲即可下载含有20个基于OpenCV实现20个实战项目,实现OpenCV学习进阶。

交流群

欢迎加入公众号读者群一起和同行交流,目前有SLAM、三维视觉、传感器、自动驾驶、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群(以后会逐渐细分),请扫描下面微信号加群,备注:”昵称+学校/公司+研究方向“,例如:”张三 + 上海交大 + 视觉SLAM“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进入相关微信群。请勿在群内发送广告,否则会请出群,谢谢理解~

这篇关于惊为天人,NumPy手写全部主流机器学习模型,代码超3万行的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/278674

相关文章

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

numpy求解线性代数相关问题

《numpy求解线性代数相关问题》本文主要介绍了numpy求解线性代数相关问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 在numpy中有numpy.array类型和numpy.mat类型,前者是数组类型,后者是矩阵类型。数组

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python