python、talib选股:自动工具介绍以及倒锤头形态搜索并可视化显示

本文主要是介绍python、talib选股:自动工具介绍以及倒锤头形态搜索并可视化显示,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1 前言

2 工具介绍

1.1 界面

 3 测试搜索倒锤头形态


1 前言

本来想研究金融,可是看到代码就烦,难道还要特意去学习python编程?那样岂不浪费好多发cai的时间?估计很多股友跟我的经历很相似。想从网上找个好的python工具,但是在网上找来找去都没找到特别中意的,全都是一堆代码,没法直接拿来主义。没办法还是边学习编程边炒gu养家吧。

2 工具介绍

这个工具的特点是,一是不用安装,直接运行;二是后台集成了python,功能强大;三是扩展性强,后面需要什么功能模块直接安装就行;四是不用敲代码,一行代码都不用敲,点几下鼠标就出结果了;五是后面会不断扩充功能,因为我要用它炒gu挣钱养家糊口,功能不强大不行;六是增加了功能我会马上发布新程序来。股友们拿来主义随便用;七是。。。。。。

1.1 界面

刚开始界面有点简陋啊,将就吧。

 

 3 测试搜索倒锤头形态

选中一个已经导出的代码,然后点击“搜:倒锤头”,几秒钟后浏览器显示结果。下面的滑块可以左右平移、放大缩小。

 

记录一下实际使用的python代码:

from typing import List, Union
import talib
from pyecharts import options as opts
from pyecharts.charts import Kline, Line, Bar, Grid
import os
import pandas as pd'''
def net_split_data(data):category_data = []values = []volumes = []for i, tick in enumerate(data):category_data.append(tick[0])values.append(tick)volumes.append([i, tick[4], 1 if tick[1] > tick[2] else -1])return {"categoryData": category_data, "values": values, "volumes": volumes}def net_get_data():response = requests.get(url="https://echarts.apache.org/examples/data/asset/data/stock-DJI.json")json_response = response.json()# 解析数据return net_split_data(data=json_response)
'''def split_data(data):category_data = []values = []volumes = []# flags = []for i, tick in enumerate(data.values.tolist()):category_data.append(tick[0])values.append(tick)volumes.append([i, tick[5], 1 if tick[1] > tick[2] else -1])# flags.append([i, 0])open_p = pd.DataFrame(values)[1]close_p = pd.DataFrame(values)[2]low_p = pd.DataFrame(values)[3]high_p = pd.DataFrame(values)[4]array_cdl2c = talib.CDLINVERTEDHAMMER(open_p, high_p, low_p, close_p) # 倒锤头# l_array_cdl2c = array_cdl2c.values.tolist()# 由于不知道如何在k线图中叠加标记,使用这种变通方法,即替换成交量图中# 的成交量为乌鸦标记# 即:用 array_cdl2c 的值替换 df_volumes 中的成交量# 列表转化为DataFrame方便列操作df_volumes = pd.DataFrame(volumes)df_volumes[1] = array_cdl2cdf_volumes[2] = 1 # 2只乌鸦标志颜色统一设置为绿色volumes = df_volumes.values.tolist()return {"categoryData": category_data, "values": values, "volumes": volumes}def get_data(code):# df_tdx = pd.read_feather(r'./dataout/tdx/'+code+r'.day.feather')# df_tdx.index=pd.to_datetime(df_tdx.Date, format = '%Y%m%d')# df_tdx_b=df_tdx.truncate(before=start_date, after = end_date)# df_tdx_b['Openinterest']=0# df_tdx_b.rename(columns={'vol':'volume'}, inplace = True)# df_tdx_b=df_tdx_b[['Open','High','Low','Close','Volume','Openinterest']]# return split_data(data=df_tdx_b)df_tdx = pd.read_feather(r'./data/tdx/'+code+r'.day.feather')df_tdx.drop('Amout', axis=1, inplace=True)df_tdx.Date=pd.to_datetime(df_tdx.Date, format = '%Y%m%d')df_tdx.Date=df_tdx.Date.map(lambda x:x.strftime('%Y-%m-%d'))# df_tdx.index=pd.to_datetime(df_tdx.Date, format = '%Y%m%d')# 调整列顺序df_tdx = df_tdx.loc[:,['Date', 'Open', 'Close', 'Low', 'High', 'Volume']]# df_tdx_b=df_tdx.truncate(before=start, after = end)# df_tdx_b['Openinterest']=0# df_tdx.rename(columns={'vol':'Volume'}, inplace = True)# df_tdx_b=df_tdx_b[['Open','High','Low','Close','Volume','Openinterest']]return split_data(data=df_tdx)def calculate_ma(day_count: int, data):result: List[Union[float, str]] = []for i in range(len(data["values"])):if i < day_count:result.append("-")continuesum_total = 0.0for j in range(day_count):sum_total += float(data["values"][i - j][1])result.append(abs(float("%.3f" % (sum_total / day_count))))return resultdef draw_charts():kline_data = [data[1:-1] for data in chart_data["values"]]kline = (Kline().add_xaxis(xaxis_data=chart_data["categoryData"]).add_yaxis(series_name="stock index",y_axis=kline_data,itemstyle_opts=opts.ItemStyleOpts(color="#ec0000", color0="#00da3c"),).set_global_opts(legend_opts=opts.LegendOpts(is_show=False, pos_bottom=10, pos_left="center"),datazoom_opts=[opts.DataZoomOpts(is_show=False,type_="inside",xaxis_index=[0, 1],range_start=98,range_end=100,),opts.DataZoomOpts(is_show=True,xaxis_index=[0, 1],type_="slider",pos_top="85%",range_start=98,range_end=100,),],yaxis_opts=opts.AxisOpts(is_scale=True,splitarea_opts=opts.SplitAreaOpts(is_show=True, areastyle_opts=opts.AreaStyleOpts(opacity=1)),),tooltip_opts=opts.TooltipOpts(trigger="axis",axis_pointer_type="cross",background_color="rgba(245, 245, 245, 0.8)",border_width=1,border_color="#ccc",textstyle_opts=opts.TextStyleOpts(color="#000"),),visualmap_opts=opts.VisualMapOpts(is_show=False,dimension=2,series_index=5,is_piecewise=True,pieces=[{"value": 1, "color": "#00da3c"},{"value": -1, "color": "#ec0000"},],),axispointer_opts=opts.AxisPointerOpts(is_show=True,link=[{"xAxisIndex": "all"}],label=opts.LabelOpts(background_color="#777"),),brush_opts=opts.BrushOpts(x_axis_index="all",brush_link="all",out_of_brush={"colorAlpha": 0.1},brush_type="lineX",),))line = (Line().add_xaxis(xaxis_data=chart_data["categoryData"]).add_yaxis(series_name="MA5",y_axis=calculate_ma(day_count=5, data=chart_data),is_smooth=True,is_hover_animation=False,linestyle_opts=opts.LineStyleOpts(width=3, opacity=0.5),label_opts=opts.LabelOpts(is_show=False),).add_yaxis(series_name="MA10",y_axis=calculate_ma(day_count=10, data=chart_data),is_smooth=True,is_hover_animation=False,linestyle_opts=opts.LineStyleOpts(width=3, opacity=0.5),label_opts=opts.LabelOpts(is_show=False),).add_yaxis(series_name="MA20",y_axis=calculate_ma(day_count=20, data=chart_data),is_smooth=True,is_hover_animation=False,linestyle_opts=opts.LineStyleOpts(width=3, opacity=0.5),label_opts=opts.LabelOpts(is_show=False),).add_yaxis(series_name="MA30",y_axis=calculate_ma(day_count=30, data=chart_data),is_smooth=True,is_hover_animation=False,linestyle_opts=opts.LineStyleOpts(width=3, opacity=0.5),label_opts=opts.LabelOpts(is_show=False),).set_global_opts(xaxis_opts=opts.AxisOpts(type_="category")))bar = (Bar().add_xaxis(xaxis_data=chart_data["categoryData"]).add_yaxis(series_name="Volume",y_axis=chart_data["volumes"],xaxis_index=1,yaxis_index=1,label_opts=opts.LabelOpts(is_show=False),).set_global_opts(xaxis_opts=opts.AxisOpts(type_="category",is_scale=True,grid_index=1,boundary_gap=False,axisline_opts=opts.AxisLineOpts(is_on_zero=False),axistick_opts=opts.AxisTickOpts(is_show=False),splitline_opts=opts.SplitLineOpts(is_show=False),axislabel_opts=opts.LabelOpts(is_show=False),split_number=20,min_="dataMin",max_="dataMax",),yaxis_opts=opts.AxisOpts(grid_index=1,is_scale=True,split_number=2,axislabel_opts=opts.LabelOpts(is_show=False),axisline_opts=opts.AxisLineOpts(is_show=False),axistick_opts=opts.AxisTickOpts(is_show=False),splitline_opts=opts.SplitLineOpts(is_show=False),),legend_opts=opts.LegendOpts(is_show=False),))# Kline And Lineoverlap_kline_line = kline.overlap(line)# Grid Overlap + Bargrid_chart = Grid(init_opts=opts.InitOpts(width="1400px",height="800px",animation_opts=opts.AnimationOpts(animation=False),))grid_chart.add(overlap_kline_line,grid_opts=opts.GridOpts(pos_left="10%", pos_right="8%", height="50%"),)grid_chart.add(bar,grid_opts=opts.GridOpts(pos_left="10%", pos_right="8%", pos_top="63%", height="16%"),)grid_chart.render("render.html")# 打开网页os.system("render.html")if __name__ == "__main__":'''df_tdx = pd.read_feather(r'./dataout/tdx/bj871396.day.feather')df_tdx.drop('Amout', axis=1, inplace=True)df_tdx.Date=pd.to_datetime(df_tdx.Date, format = '%Y%m%d')df_tdx.Date=df_tdx.Date.map(lambda x:x.strftime('%Y-%m-%d'))# df_tdx.index=pd.to_datetime(df_tdx.Date, format = '%Y%m%d')# df_tdx.Date = df_tdx.astype({'Date':'str'})# df_tdx.Date = df_tdx.Date.map(lamda x:)# df_tdx.rename(columns={'vol':'Volume'}, inplace = True)# df_tdx_b=df_tdx_b[['Open','High','Low','Close','Volume','Openinterest']]# print(df_tdx.dtypes)# print(list(df_tdx))df_tdx = df_tdx.loc[:,['Date', 'Open', 'Close', 'Low', 'High', 'Volume']]# print(list(df_tdx))d_category_data = []d_values = []d_volumes = []# d_flags = []for i, tick in enumerate(df_tdx.values.tolist()):d_category_data.append(tick[0])d_values.append(tick)d_volumes.append([i, tick[5], 1 if tick[1] > tick[2] else -1])# d_flags.append([i, 0])open_p = pd.DataFrame(d_values)[1]close_p = pd.DataFrame(d_values)[2]low_p = pd.DataFrame(d_values)[3]high_p = pd.DataFrame(d_values)[4]array_cdl2c = talib.CDLINVERTEDHAMMER(open_p, high_p, low_p, close_p)# array_cdl2c 与 d_volumes合并,# 然后用 array_cdl2c 的之替换 df_volumes 中的成交量# 列表转化为DataFrame方便列操作df_volumes = pd.DataFrame(d_volumes)df_volumes[1] = array_cdl2c# l_array_cdl2c = array_cdl2c.values.tolist()''''''response = requests.get(url="https://echarts.apache.org/examples/data/asset/data/stock-DJI.json")json_response = response.json()# 解析数据category_data = []values = []volumes = []for i, tick in enumerate(json_response):category_data.append(tick[0])values.append(tick)volumes.append([i, tick[4], 1 if tick[1] > tick[2] else -1])# return {"categoryData": category_data, "values": values, "volumes": volumes}'''# net_chart_data = net_get_data()chart_data = get_data('bj430198')# chart_data = net_get_data()draw_charts()

程序有点大,近90M:

谁想用用试试程序就在评论区留下邮箱吧,我直接发你邮箱。

有什么建议请在评论区留言,不接受其他交流方式,有合适的建议我就加到程序里。

这篇关于python、talib选股:自动工具介绍以及倒锤头形态搜索并可视化显示的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/278085

相关文章

Python中conda虚拟环境创建及使用小结

《Python中conda虚拟环境创建及使用小结》本文主要介绍了Python中conda虚拟环境创建及使用小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录0.前言1.Miniconda安装2.conda本地基本操作3.创建conda虚拟环境4.激活c

Java中有什么工具可以进行代码反编译详解

《Java中有什么工具可以进行代码反编译详解》:本文主要介绍Java中有什么工具可以进行代码反编译的相关资,料,包括JD-GUI、CFR、Procyon、Fernflower、Javap、Byte... 目录1.JD-GUI2.CFR3.Procyon Decompiler4.Fernflower5.Jav

使用Python创建一个能够筛选文件的PDF合并工具

《使用Python创建一个能够筛选文件的PDF合并工具》这篇文章主要为大家详细介绍了如何使用Python创建一个能够筛选文件的PDF合并工具,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录背景主要功能全部代码代码解析1. 初始化 wx.Frame 窗口2. 创建工具栏3. 创建布局和界面控件4

一文详解如何在Python中使用Requests库

《一文详解如何在Python中使用Requests库》:本文主要介绍如何在Python中使用Requests库的相关资料,Requests库是Python中常用的第三方库,用于简化HTTP请求的发... 目录前言1. 安装Requests库2. 发起GET请求3. 发送带有查询参数的GET请求4. 发起PO

Python与DeepSeek的深度融合实战

《Python与DeepSeek的深度融合实战》Python作为最受欢迎的编程语言之一,以其简洁易读的语法、丰富的库和广泛的应用场景,成为了无数开发者的首选,而DeepSeek,作为人工智能领域的新星... 目录一、python与DeepSeek的结合优势二、模型训练1. 数据准备2. 模型架构与参数设置3

Python进行PDF文件拆分的示例详解

《Python进行PDF文件拆分的示例详解》在日常生活中,我们常常会遇到大型的PDF文件,难以发送,将PDF拆分成多个小文件是一个实用的解决方案,下面我们就来看看如何使用Python实现PDF文件拆分... 目录使用工具将PDF按页数拆分将PDF的每一页拆分为单独的文件将PDF按指定页数拆分根据页码范围拆分

Docker部署Jenkins持续集成(CI)工具的实现

《Docker部署Jenkins持续集成(CI)工具的实现》Jenkins是一个流行的开源自动化工具,广泛应用于持续集成(CI)和持续交付(CD)的环境中,本文介绍了使用Docker部署Jenkins... 目录前言一、准备工作二、设置变量和目录结构三、配置 docker 权限和网络四、启动 Jenkins

Python中常用的四种取整方式分享

《Python中常用的四种取整方式分享》在数据处理和数值计算中,取整操作是非常常见的需求,Python提供了多种取整方式,本文为大家整理了四种常用的方法,希望对大家有所帮助... 目录引言向零取整(Truncate)向下取整(Floor)向上取整(Ceil)四舍五入(Round)四种取整方式的对比综合示例应

python 3.8 的anaconda下载方法

《python3.8的anaconda下载方法》本文详细介绍了如何下载和安装带有Python3.8的Anaconda发行版,包括Anaconda简介、下载步骤、安装指南以及验证安装结果,此外,还介... 目录python3.8 版本的 Anaconda 下载与安装指南一、Anaconda 简介二、下载 An

Python自动化处理手机验证码

《Python自动化处理手机验证码》手机验证码是一种常见的身份验证手段,广泛应用于用户注册、登录、交易确认等场景,下面我们来看看如何使用Python自动化处理手机验证码吧... 目录一、获取手机验证码1.1 通过短信接收验证码1.2 使用第三方短信接收服务1.3 使用ADB读取手机短信1.4 通过API获取