【算法挨揍日记】day17——1137. 第 N 个泰波那契数、面试题 08.01. 三步问题

本文主要是介绍【算法挨揍日记】day17——1137. 第 N 个泰波那契数、面试题 08.01. 三步问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 1137. 第 N 个泰波那契数

1137. 第 N 个泰波那契数

题目描述: 

泰波那契序列 Tn 定义如下: 

T0 = 0, T1 = 1, T2 = 1, 且在 n >= 0 的条件下 Tn+3 = Tn + Tn+1 + Tn+2

给你整数 n,请返回第 n 个泰波那契数 Tn 的值。

 解题思路:

本题很明显

  1. 状态表示dp【i】为第n个泰波那契数,本题是第一种情况,后面的题目我们会不断遇到1,2,3的情况,我们后面再细讲
  2. 而状态转移方程为题目也直接给了出来, Tn+3 = Tn + Tn+1 + Tn+2,状态转移方程: Tn = Tn -1+ Tn-2 + Tn-3
  3. 初始化(防止越界的情况):本题很明显Tn-3的时候当,n小于3的时候会出现越界的情况,因此我们要提前初始化好dp【0】 ,dp【1】,dp【2】
  4. 填表顺序: 左到右
  5. 返回值;dp【n】

细节问题: 

  •  当n<3的时候,就不需要进行Tn = Tn -1+ Tn-2 + Tn-3计算因此就可以直接返回

空间优化问题:

本题如果我们按照上面的写法的话,就需要开辟一个n+1大小的vector数组dp,当我们在计算第n个位置的时候,我们只需要n-1,n-2,n-3的位置,如果前面还有n-4和n-5都不需要的

因此我们就可以直接用三个变量a,b,c来优化,使得空间复杂度为o(1)

解题代码: 

class Solution {
public:int tribonacci(int n) {if (n == 0)return 0;if (n == 1 || n == 2)return 1;vector<int>dp(n + 1);dp[0] = 0, dp[1] = 1, dp[2] = 1;for (int i = 3; i <= n; i++)dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3];return dp[n];}
};

 空间优化后:

class Solution {
public:int tribonacci(int n) {if (n == 0)return 0;if (n == 1 || n == 2)return 1;int a = 0, b = 1, c = 1;int d = 0;for (int i = 3; i <= n; i++){d = a + b + c;a = b; b = c; c = d;}return d;}
};

面试题 08.01. 三步问题

面试题 08.01. 三步问题

题目描述:

三步问题。有个小孩正在上楼梯,楼梯有n阶台阶,小孩一次可以上1阶、2阶或3阶。实现一种方法,计算小孩有多少种上楼梯的方式。结果可能很大,你需要对结果模1000000007。 

 解题思路:

分析一下题目的意思:

当从0号台阶到1号台阶,只有1种方法;

当从0号台阶到2号台阶,我们可以直接从0号台阶蹦到2号台阶,也可以从0-1-2,总共两种解法

当从0号台阶到3号台阶,我们可以从0号直接蹦到3号台阶,也可以0-1-2-3和0-2-3和0-1-3,总共4种解法

 眼尖的同学这个时候以及发现了状态转移方程了,我们注意一下(以到4号台阶为例):我们可以看成从1号到4的方法数+2号到4号的方法数+3号到4号的方法数

  1. 因此我们的状态表示dp【i】就表示到达第i号台阶的方法数
  2. 状态转移方程:

此时有的同学会有一个疑问:就是我从i-2号台阶到i号台阶的时候不是有两种情况:

  • i-2到i
  • i-2先到i-1再到i号台阶 

其实不然:i-2先到i-1的这种情况以及是包含在i-1到i的方法数中

  1. 初始化(防止越界的情况):本题很明显Tn-3的时候当,n小于3的时候会出现越界的情况,因此我们要提前初始化好dp【0】 ,dp【1】,dp【2】
  2. 填表顺序: 左到右
  3. 返回值;dp【n】

 解题代码:

class Solution {
public:const int MOD=1e9+7;int waysToStep(int n) {if(n==1)return 1;if(n==2)return 2;if(n==3)return 4;vector<int>dp(n+1);dp[1]=1,dp[2]=2,dp[3]=4;for(int i=4;i<=n;i++)dp[i]=((dp[i-1]+dp[i-2])%MOD+dp[i-3])%MOD;return dp[n];        }
};

这篇关于【算法挨揍日记】day17——1137. 第 N 个泰波那契数、面试题 08.01. 三步问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/277255

相关文章

IntelliJ IDEA 中配置 Spring MVC 环境的详细步骤及问题解决

《IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决》:本文主要介绍IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决,本文分步骤结合实例给大... 目录步骤 1:创建 Maven Web 项目步骤 2:添加 Spring MVC 依赖1、保存后执行2、将新的依赖

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

Spring Boot中JSON数值溢出问题从报错到优雅解决办法

《SpringBoot中JSON数值溢出问题从报错到优雅解决办法》:本文主要介绍SpringBoot中JSON数值溢出问题从报错到优雅的解决办法,通过修改字段类型为Long、添加全局异常处理和... 目录一、问题背景:为什么我的接口突然报错了?二、为什么会发生这个错误?1. Java 数据类型的“容量”限制

关于MongoDB图片URL存储异常问题以及解决

《关于MongoDB图片URL存储异常问题以及解决》:本文主要介绍关于MongoDB图片URL存储异常问题以及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录MongoDB图片URL存储异常问题项目场景问题描述原因分析解决方案预防措施js总结MongoDB图

SpringBoot项目中报错The field screenShot exceeds its maximum permitted size of 1048576 bytes.的问题及解决

《SpringBoot项目中报错ThefieldscreenShotexceedsitsmaximumpermittedsizeof1048576bytes.的问题及解决》这篇文章... 目录项目场景问题描述原因分析解决方案总结项目场景javascript提示:项目相关背景:项目场景:基于Spring

解决Maven项目idea找不到本地仓库jar包问题以及使用mvn install:install-file

《解决Maven项目idea找不到本地仓库jar包问题以及使用mvninstall:install-file》:本文主要介绍解决Maven项目idea找不到本地仓库jar包问题以及使用mvnin... 目录Maven项目idea找不到本地仓库jar包以及使用mvn install:install-file基

usb接口驱动异常问题常用解决方案

《usb接口驱动异常问题常用解决方案》当遇到USB接口驱动异常时,可以通过多种方法来解决,其中主要就包括重装USB控制器、禁用USB选择性暂停设置、更新或安装新的主板驱动等... usb接口驱动异常怎么办,USB接口驱动异常是常见问题,通常由驱动损坏、系统更新冲突、硬件故障或电源管理设置导致。以下是常用解决

Mysql如何解决死锁问题

《Mysql如何解决死锁问题》:本文主要介绍Mysql如何解决死锁问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录【一】mysql中锁分类和加锁情况【1】按锁的粒度分类全局锁表级锁行级锁【2】按锁的模式分类【二】加锁方式的影响因素【三】Mysql的死锁情况【1

SpringBoot内嵌Tomcat临时目录问题及解决

《SpringBoot内嵌Tomcat临时目录问题及解决》:本文主要介绍SpringBoot内嵌Tomcat临时目录问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录SprinjavascriptgBoot内嵌Tomcat临时目录问题1.背景2.方案3.代码中配置t

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr