python 相关性分析切点寻找,Python自然平滑样条线

2023-10-24 15:30

本文主要是介绍python 相关性分析切点寻找,Python自然平滑样条线,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

I am trying to find a python package that would give an option to fit natural smoothing splines with user selectable smoothing factor. Is there an implementation for that? If not, how would you use what is available to implement it yourself?

By natural spline I mean that there should be a condition that the second derivative of the fitted function at the endpoints is zero (linear).

By smoothing spline I mean that the spline should not be 'interpolating' (passing through all the datapoints). I would like to decide the correct smoothing factor lambda (see the Wikipedia page for smoothing splines) myself.

What I have found

scipy.interpolate.CubicSpline [link]: Does natural (cubic) spline fitting. Does interpolation, and there is no way to smooth the data.

scipy.interpolate.UnivariateSpline [link]: Does spline fitting with user selectable smoothing factor. However, there is no option to make the splines natural.

解决方案

After hours of investigation, I did not find any pip installable packages which could fit a natural cubic spline with user-controllable smoothness. However, after deciding to write one myself, while reading about the topic I stumbled upon a blog post by github user madrury. He has written python code capable of producing natural cubic spline models.

The model code is available here (NaturalCubicSpline) with a BSD-licence. He has also written some examples in an IPython notebook.

But since this is the Internet and links tend to die, I will copy the relevant parts of the source code here + a helper function (get_natural_cubic_spline_model) written by me, and show an example of how to use it. The smoothness of the fit can be controlled by using different number of knots. The position of the knots can be also specified by the user.

Example

from matplotlib import pyplot as plt

import numpy as np

def func(x):

return 1/(1+25*x**2)

# make example data

x = np.linspace(-1,1,300)

y = func(x) + np.random.normal(0, 0.2, len(x))

# The number of knots can be used to control the amount of smoothness

model_6 = get_natural_cubic_spline_model(x, y, minval=min(x), maxval=max(x), n_knots=6)

model_15 = get_natural_cubic_spline_model(x, y, minval=min(x), maxval=max(x), n_knots=15)

y_est_6 = model_6.predict(x)

y_est_15 = model_15.predict(x)

plt.plot(x, y, ls='', marker='.', label='originals')

plt.plot(x, y_est_6, marker='.', label='n_knots = 6')

plt.plot(x, y_est_15, marker='.', label='n_knots = 15')

plt.legend(); plt.show()

3f3a5b82f015ba8333b227668f2b60af.png

The source code for get_natural_cubic_spline_model

import numpy as np

import pandas as pd

from sklearn.base import BaseEstimator, TransformerMixin

from sklearn.linear_model import LinearRegression

from sklearn.pipeline import Pipeline

def get_natural_cubic_spline_model(x, y, minval=None, maxval=None, n_knots=None, knots=None):

"""

Get a natural cubic spline model for the data.

For the knots, give (a) `knots` (as an array) or (b) minval, maxval and n_knots.

If the knots are not directly specified, the resulting knots are equally

space within the *interior* of (max, min). That is, the endpoints are

*not* included as knots.

Parameters

----------

x: np.array of float

The input data

y: np.array of float

The outpur data

minval: float

Minimum of interval containing the knots.

maxval: float

Maximum of the interval containing the knots.

n_knots: positive integer

The number of knots to create.

knots: array or list of floats

The knots.

Returns

--------

model: a model object

The returned model will have following method:

- predict(x):

x is a numpy array. This will return the predicted y-values.

"""

if knots:

spline = NaturalCubicSpline(knots=knots)

else:

spline = NaturalCubicSpline(max=maxval, min=minval, n_knots=n_knots)

p = Pipeline([

('nat_cubic', spline),

('regression', LinearRegression(fit_intercept=True))

])

p.fit(x, y)

return p

class AbstractSpline(BaseEstimator, TransformerMixin):

"""Base class for all spline basis expansions."""

def __init__(self, max=None, min=None, n_knots=None, n_params=None, knots=None):

if knots is None:

if not n_knots:

n_knots = self._compute_n_knots(n_params)

knots = np.linspace(min, max, num=(n_knots + 2))[1:-1]

max, min = np.max(knots), np.min(knots)

self.knots = np.asarray(knots)

@property

def n_knots(self):

return len(self.knots)

def fit(self, *args, **kwargs):

return self

class NaturalCubicSpline(AbstractSpline):

"""Apply a natural cubic basis expansion to an array.

The features created with this basis expansion can be used to fit a

piecewise cubic function under the constraint that the fitted curve is

linear *outside* the range of the knots.. The fitted curve is continuously

differentiable to the second order at all of the knots.

This transformer can be created in two ways:

- By specifying the maximum, minimum, and number of knots.

- By specifying the cutpoints directly.

If the knots are not directly specified, the resulting knots are equally

space within the *interior* of (max, min). That is, the endpoints are

*not* included as knots.

Parameters

----------

min: float

Minimum of interval containing the knots.

max: float

Maximum of the interval containing the knots.

n_knots: positive integer

The number of knots to create.

knots: array or list of floats

The knots.

"""

def _compute_n_knots(self, n_params):

return n_params

@property

def n_params(self):

return self.n_knots - 1

def transform(self, X, **transform_params):

X_spl = self._transform_array(X)

if isinstance(X, pd.Series):

col_names = self._make_names(X)

X_spl = pd.DataFrame(X_spl, columns=col_names, index=X.index)

return X_spl

def _make_names(self, X):

first_name = "{}_spline_linear".format(X.name)

rest_names = ["{}_spline_{}".format(X.name, idx)

for idx in range(self.n_knots - 2)]

return [first_name] + rest_names

def _transform_array(self, X, **transform_params):

X = X.squeeze()

try:

X_spl = np.zeros((X.shape[0], self.n_knots - 1))

except IndexError: # For arrays with only one element

X_spl = np.zeros((1, self.n_knots - 1))

X_spl[:, 0] = X.squeeze()

def d(knot_idx, x):

def ppart(t): return np.maximum(0, t)

def cube(t): return t*t*t

numerator = (cube(ppart(x - self.knots[knot_idx]))

- cube(ppart(x - self.knots[self.n_knots - 1])))

denominator = self.knots[self.n_knots - 1] - self.knots[knot_idx]

return numerator / denominator

for i in range(0, self.n_knots - 2):

X_spl[:, i+1] = (d(i, X) - d(self.n_knots - 2, X)).squeeze()

return X_spl

这篇关于python 相关性分析切点寻找,Python自然平滑样条线的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/276122

相关文章

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.

使用Python实现快速搭建本地HTTP服务器

《使用Python实现快速搭建本地HTTP服务器》:本文主要介绍如何使用Python快速搭建本地HTTP服务器,轻松实现一键HTTP文件共享,同时结合二维码技术,让访问更简单,感兴趣的小伙伴可以了... 目录1. 概述2. 快速搭建 HTTP 文件共享服务2.1 核心思路2.2 代码实现2.3 代码解读3.

Python使用自带的base64库进行base64编码和解码

《Python使用自带的base64库进行base64编码和解码》在Python中,处理数据的编码和解码是数据传输和存储中非常普遍的需求,其中,Base64是一种常用的编码方案,本文我将详细介绍如何使... 目录引言使用python的base64库进行编码和解码编码函数解码函数Base64编码的应用场景注意

Python基于wxPython和FFmpeg开发一个视频标签工具

《Python基于wxPython和FFmpeg开发一个视频标签工具》在当今数字媒体时代,视频内容的管理和标记变得越来越重要,无论是研究人员需要对实验视频进行时间点标记,还是个人用户希望对家庭视频进行... 目录引言1. 应用概述2. 技术栈分析2.1 核心库和模块2.2 wxpython作为GUI选择的优

Python如何使用__slots__实现节省内存和性能优化

《Python如何使用__slots__实现节省内存和性能优化》你有想过,一个小小的__slots__能让你的Python类内存消耗直接减半吗,没错,今天咱们要聊的就是这个让人眼前一亮的技巧,感兴趣的... 目录背景:内存吃得满满的类__slots__:你的内存管理小助手举个大概的例子:看看效果如何?1.