Python冲一波股票?两者会碰撞出什么样的火花?

2023-10-24 13:00

本文主要是介绍Python冲一波股票?两者会碰撞出什么样的火花?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

今天来搞搞股票?实在想不出来可以给你们分享分享啥案例了 要不你们在评论区举例子? 然后我再发文章分享,咋样?我的宝宝们~

哈哈,好油腻,我自己都受不了了,不东扯西扯了

先提前说一嘴哈,有小伙伴看了爬股票数据进行分析的教程中过,但是我还是不建议各位去碰这玩意,今天咱们就是纯纯的分享技术~还是老老实实挣钱比较好哈,咱有技术后,钱就来了

在这里插入图片描述
okok,开始进入正题吧

准备工作

既然要去赚马内,咱们首先要获取往期的数据来进行分析,通过往期的规律来对当前进行预测,准不准我不知道,反正比人预测的准,不准也不要喷我,咱们是来交流技术的,不是来炒股的。

我们需要使用这些模块,通过pip安装即可。

后续使用的其它的模块都是Python自带的,不需要安装,直接导入使用即可。

requests:      爬虫数据请求模块
pyecharts:     数据分析 可视化模块
pandas:        数据分析 可视化模块里面的设置模块(图表样式)

获取数据部分

爬虫的基本流程
思路分析

采集什么数据?怎么采集?

首先我们找到数据来源,从network当中去找到数据所在的位置,这一步就不详细讲了。

但是你们有问题可以直接问我哈,不要害羞,也可以点文末名片一起交流学习

代码实现

完整 代码 文末名片/代码中数字 qun领取

我们想要实现通过爬虫获取到数据,正常情况下有几个步骤:

  1. 发送请求
  2. 获取数据
  3. 解析数据
  4. 保存数据

接下来我们来看代码

代码展示
导入需要使用的模块

import requests     # 数据请求模块
import csv          # 表格模块

1、发送请求

通过response模块来访问需要获取数据的地址

url = 'https://stock.xueqiu.com/v5/stock/screener/quote/list.json?page={page}&size=30&order=desc&orderby=percent&order_by=percent&market=CN&type=sh_sz'
requests.get(url=url)

假设目标网址是你刚认识的妹子家,你能穿的破破烂烂,脏不溜秋的就进去吗?肯定得打扮一番,把自己伪装的人模狗样的才让你进去对不对,不然就被赶出来了。

同理,直接这么进去是不一定能获取到数据,所以需要使用 cookie 来伪装一下,cookie代表着用户身份信息。

当然光cookie是不够的,咱们再加上当前网页的 user-agent

伪装加好之后,咱们就能得到一个相应结果,先打印出来看看。

import requests  # 第三方模块
import csv# 伪装
690643772 ### 源码领取
headers = {# 用户身份信息'cookie': 's=bq119wflib; device_id=90ec0683f24e4d1dd28a383d87fa03c5; xq_a_token=df4b782b118f7f9cabab6989b39a24cb04685f95; xqat=df4b782b118f7f9cabab6989b39a24cb04685f95; xq_r_token=3ae1ada2a33de0f698daa53fb4e1b61edf335952; ,# 浏览器的基本信息'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36'
}url = 'https://stock.xueqiu.com/v5/stock/screener/quote/list.json?page={page}&size=30&order=desc&orderby=percent&order_by=percent&market=CN&type=sh_sz'# 1. 发送请求
response = requests.get(url=url, headers=headers)print(response)

请添加图片描述

运行后出现 <Response [200]>求请求成功,出现404就是访问不到资源,一般是被反爬了。

所以这时候我们需要加一个 referer 防盗链参数进去

'referer: https://xueqiu.com/hq'

如果加了还不行,就是自己链接有问题了。

取数据的话 .json 就好了

import requests  # 第三方模块
import csv# 伪装
headers = {# 用户身份信息'cookie': 's=bq119wflib; device_id=90ec0683f24e4d1dd28a383d87fa03c5; xq_a_token=df4b782b118f7f9cabab6989b39a24cb04685f95; xqat=df4b782b118f7f9cabab6989b39a24cb04685f95; ',# 防盗链'referer: https://xueqiu.com/hq'# 浏览器的基本信息'user-agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.0.0 Safari/537.36'
}url = 'https://stock.xueqiu.com/v5/stock/screener/quote/list.json?page={page}&size=30&order=desc&orderby=percent&order_by=percent&market=CN&type=sh_sz'# 1. 发送请求
response = requests.get(url=url, headers=headers)print(response.json())

请添加图片描述

2、获取数据

什么是json数据?

以 {}/[] 所包裹起来的数据 {“”:“”, “”:“”}

除了 .json 还可以通过 .text 和 .content 来拿到数据,但是它们获取到的数据是一样。

.text 获取到的是字符串,文本内容。
.content 取到的是二进制数据,一般是图片/音频/视频内容。

json_data = response.json()

3、解析数据

解析数据就是提取数据,把我们想要的数据提取出来。

没学过字典的小伙伴,可以先学一下字典。

data_list = json_data['data']['list']
# data_list[0]
# data_list[1]
690643772 ### 源码领取
for i in range(0, len(data_list)):symbol = data_list[i]['symbol']name = data_list[i]['name']current = data_list[i]['current']chg = data_list[i]['chg']percent = data_list[i]['percent']current_year_percent = data_list[i]['current_year_percent']volume = data_list[i]['volume']amount = data_list[i]['amount']turnover_rate = data_list[i]['turnover_rate']pe_ttm = data_list[i]['pe_ttm']dividend_yield = data_list[i]['dividend_yield']market_capital = data_list[i]['market_capital']print(symbol, name, current, chg, percent, current_year_percent, volume, amount, turnover_rate, pe_ttm, dividend_yield, market_capital)

4、保存数据

csv_writer.writerow([symbol, name, current, chg, percent, current_year_percent, volume, amount, turnover_rate, pe_ttm, dividend_yield, market_capital])

爬虫部分就结束了,接下来看数据分析部分
文章不理解,我还录了视频讲解
视频以及完整代码在文末名片自取即可

数据可视化分析

导入需要使用的模块

import pandas as pd         # 做表格数据处理模块 
from pyecharts.charts import Bar    # 可视化模块 
from pyecharts import options as opts   # 可视化模块里面的设置模块(图表样式)

读取数据

df = pd.read_csv('股票.csv')
x = list(df['股票名称'].values)
y = list(df['成交量'].values)690643772 ### 源码领取
c = (Bar().add_xaxis(x[:10]).add_yaxis("成交额", y[:10]).set_global_opts(xaxis_opts=opts.AxisOpts(axislabel_opts=opts.LabelOpts(rotate=-15)),title_opts=opts.TitleOpts(title="Bar-旋转X轴标签", subtitle="解决标签名字过长的问题"),).render("成交量图表.html")

最后

这次的分享到这里就结束了哈,感兴趣的朋友可以去试试的

👇 问题解答 · 源码获取 · 技术交流 · 抱团学习请点击下方名片 👇

这篇关于Python冲一波股票?两者会碰撞出什么样的火花?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/275344

相关文章

Python运行中频繁出现Restart提示的解决办法

《Python运行中频繁出现Restart提示的解决办法》在编程的世界里,遇到各种奇怪的问题是家常便饭,但是,当你的Python程序在运行过程中频繁出现“Restart”提示时,这可能不仅仅是令人头疼... 目录问题描述代码示例无限循环递归调用内存泄漏解决方案1. 检查代码逻辑无限循环递归调用内存泄漏2.

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

如何将Python彻底卸载的三种方法

《如何将Python彻底卸载的三种方法》通常我们在一些软件的使用上有碰壁,第一反应就是卸载重装,所以有小伙伴就问我Python怎么卸载才能彻底卸载干净,今天这篇文章,小编就来教大家如何彻底卸载Pyth... 目录软件卸载①方法:②方法:③方法:清理相关文件夹软件卸载①方法:首先,在安装python时,下

python uv包管理小结

《pythonuv包管理小结》uv是一个高性能的Python包管理工具,它不仅能够高效地处理包管理和依赖解析,还提供了对Python版本管理的支持,本文主要介绍了pythonuv包管理小结,具有一... 目录安装 uv使用 uv 管理 python 版本安装指定版本的 Python查看已安装的 Python

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

Python中局部变量和全局变量举例详解

《Python中局部变量和全局变量举例详解》:本文主要介绍如何通过一个简单的Python代码示例来解释命名空间和作用域的概念,它详细说明了内置名称、全局名称、局部名称以及它们之间的查找顺序,文中通... 目录引入例子拆解源码运行结果如下图代码解析 python3命名空间和作用域命名空间命名空间查找顺序命名空

Python如何将大TXT文件分割成4KB小文件

《Python如何将大TXT文件分割成4KB小文件》处理大文本文件是程序员经常遇到的挑战,特别是当我们需要把一个几百MB甚至几个GB的TXT文件分割成小块时,下面我们来聊聊如何用Python自动完成这... 目录为什么需要分割TXT文件基础版:按行分割进阶版:精确控制文件大小完美解决方案:支持UTF-8编码