Forget-free Continual Learning with Winning Subnetworks论文阅读+代码解析

本文主要是介绍Forget-free Continual Learning with Winning Subnetworks论文阅读+代码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本篇文章是来自ICML2022上的一篇,而且是由之前出名的FedWEIT的团队进行研究的,因此这篇文章中也存在着相似的影子,论文地址点这里。

一. 背景(简要介绍)

持续学习又被称为增量式学习,要求不断地接受数据样本并且不会产生灾难性遗忘。最广泛的3种类型为:基于正则化的持续学习,基于记忆重塑的持续学习以及基于动态架构的持续学习。然而,上述的方法都会造成新的内存压力,特别是对于记忆重塑和动态架构。因此,现在又产生了一种基于修建的方法,如下:
在这里插入图片描述
可以发现这些方法(a-c)都将模型进行了一些切分,让每个任务有对应的网络进行训练。

本文中,作者运用了彩票假设(Lottery Ticket Hypothesis),为每一个任务考虑一个子模型进行训练。

补充:彩票假设大概意思是当一个人买了足够多的彩票之后,其中必定有一张彩票是中奖的。对应于神经网络就是,在庞大的参数面前,我们可以从中提取一部分的参数形成子网络,而这个子网络能够表现的和主网络一样好。

二. Forget-Free Continual Learning with Winning SubNetworks

问题定义: 在持续学习中,存在着 T T T个任务,假设第 t t t个任务的数据集表示为 D t = { x i , t , y i , t } i = 1 n t \mathcal{D}_t=\{x_{i,t},y_{i,t}\}^{n_t}_{i=1} Dt={xi,t,yi,t}i=1nt,其中 n t n_t nt表示对应的样本数。假设神经网络为为 f ( . ; θ ) f(.;\theta) f(.;θ),那么在任务 t t t上我们优化目标为:
θ ∗ = min ⁡ θ 1 n t ∑ i = 1 n t L ( f ( x i , t ; θ ) , y i , t ) \theta^*=\min_{\theta}\frac{1}{n_t}\sum_{i=1}^{n_t}\mathcal{L}(f(x_{i,t};\theta),y_{i,t}) θ=θminnt1i=1ntL(f(xi,t;θ),yi,t)
为了留出学习未来任务的空间,可以找到获得同等甚至更好性能的子网络。给定网络参数 θ \theta θ,设定一个最优二进制掩码(mask) m ∗ m^* m用于提取最优的子网络,并且要求子网络的参数小于主网络,具体来说可以描述为:
m t ∗ = min ⁡ m t ∈ { 0 , 1 } ∣ θ ∣ 1 n t ∑ i = 1 n t L ( f ( x i , t ; θ ⊙ m t ) , y i , t ) − C subject to  ∣ m t ∗ ∣ ≤ c m_t^*=\min_{m_t\in\{0,1\}^{|\theta|}}\frac{1}{n_t}\sum_{i=1}^{n_t}\mathcal{L}(f(x_{i,t};\theta \odot m_t),y_{i,t}) -C \\ \text{subject to}\ |m_t^*| \leq c mt=mt{0,1}θminnt1i=1ntL(f(xi,t;θmt),yi,t)Csubject to mtc
其中 C = L ( f ( x i , t ; θ ) , y i , t ) C=\mathcal{L}(f(x_{i,t};\theta),y_{i,t}) C=L(f(xi,t;θ),yi,t)

2.1 Winning SubNetworks

假设可以给每一个网络权重 w w w进行打分,分值越高代表该网路对任务的贡献越大,之后就可以进行评估(这里作者其实就是大概介绍了他们的思路以及为啥要用子网络,没有什么特别的信息,具体的方法在下面介绍)而实现子网络,具体的图如下:
在这里插入图片描述
值得注意的是,新的任务也会用到之前任务学习过的参数,但为了不破坏之前的参数,因此不会选择去更新旧的参数。

2.2 具体的优化过程

有了子网络后,我们的优化目标变为:
min ⁡ θ , s L ( θ ⊙ m t ; D t ) \min_{\theta,s}\mathcal{L}(\theta \odot m_t;\mathcal{D}_t) θ,sminL(θmt;Dt)
此处 s s s表示给每个权重的打分。然而,这种普通的优化过程存在两个问题:(1)在新任务的训练时更新所有 θ \theta θ会干扰为以前任务分配的权重,(2)我们无法使用梯度更新分值 s s s。为了解决第一个问题,这里使用选择性地更新参数。具体来说,假设 M t − 1 = ∨ i = 1 t − 1 m i M_{t-1}=∨^{t-1}_{i=1}m_i Mt1=i=1t1mi表示之前所有任务的掩码集合,那么更新变为:
θ ← θ − η ( ∂ L ∂ θ ⊙ ( 1 − M t − 1 ) ) \theta \leftarrow \theta\ -\ \eta(\frac{\partial \mathcal{L}}{\partial \theta} \odot(1-M_{t-1})) θθ  η(θL(1Mt1))
这样就能保证冻结住那些已经被训练过的参数。对于第二个问题,可以使用top-c%进行分数的打分(这里到具体代码解释)。整体的算法如下:
在这里插入图片描述

2.3 掩码的编码过程

可以发现,上述需要存放掩码,这里作者使用每7位形成一个ASCII编码进行存储,减少存储量。(举个例子,假如现在掩码为0011000101000001010…,我们每7个进行存储,第一个就是0110000转换成十进制为42,对应于就是数字0),这样能大大减少空间。

三. 代码解析

作者的代码点这里。
上述两个关键的就是,实现子网络,这里代码为:在这里插入图片描述

这里是作者重写了一个全连接层,红框标出的就是掩码和参数的过程,那么对于每一个网络掩码的是如何确定的呢?可以发现其对应于GetSubnetFaster里面,我们具体来看看:
在这里插入图片描述
首先对应于forward来,这里scores对应的就是全连接层的参数 w w w(这里要取绝对值),sparsity是一个提前定义好的量,表示为稀疏度,在0-1之间,在进行计算的时候,首先运行到percentile中,我们使用稀疏度*参数个数得到k,然后根据k计算网络中的第k_val大的数字(也就是求k分数),之后再将比k_val大的变为1其余变为0。因此,其实这里就是用了最标准的剪枝算法,选择前k个最大的权值,而剩余的舍弃。这里就是作者利用提到的分数的计算规则,而注意到backward,在计算梯度的时候是直接将传入的梯度g直接传出,而在一个任务训练多轮中,每一次都会变化参数而导致分位数变化从而实现掩码的变化
第二个部分就简单了,那就是每次更新的参数只能是那些没有用过的,代码如下(train函数里面):
在这里插入图片描述
也就是依次找到那些被用过的参数,让他们的grad变为0即可。最后就是训练完一个任务后把他的掩码和之前的掩码合并:
在这里插入图片描述
这次的论文想法还是挺行的,而且和FedWEIT一样都使用了掩码,欢迎大家提出意见~

这篇关于Forget-free Continual Learning with Winning Subnetworks论文阅读+代码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/qq_45478482/article/details/127061680
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/275284

相关文章

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分

jupyter代码块没有运行图标的解决方案

《jupyter代码块没有运行图标的解决方案》:本文主要介绍jupyter代码块没有运行图标的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录jupyter代码块没有运行图标的解决1.找到Jupyter notebook的系统配置文件2.这时候一般会搜索到

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

Java图片压缩三种高效压缩方案详细解析

《Java图片压缩三种高效压缩方案详细解析》图片压缩通常涉及减少图片的尺寸缩放、调整图片的质量(针对JPEG、PNG等)、使用特定的算法来减少图片的数据量等,:本文主要介绍Java图片压缩三种高效... 目录一、基于OpenCV的智能尺寸压缩技术亮点:适用场景:二、JPEG质量参数压缩关键技术:压缩效果对比

关于WebSocket协议状态码解析

《关于WebSocket协议状态码解析》:本文主要介绍关于WebSocket协议状态码的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录WebSocket协议状态码解析1. 引言2. WebSocket协议状态码概述3. WebSocket协议状态码详解3

CSS Padding 和 Margin 区别全解析

《CSSPadding和Margin区别全解析》CSS中的padding和margin是两个非常基础且重要的属性,它们用于控制元素周围的空白区域,本文将详细介绍padding和... 目录css Padding 和 Margin 全解析1. Padding: 内边距2. Margin: 外边距3. Padd

Oracle数据库常见字段类型大全以及超详细解析

《Oracle数据库常见字段类型大全以及超详细解析》在Oracle数据库中查询特定表的字段个数通常需要使用SQL语句来完成,:本文主要介绍Oracle数据库常见字段类型大全以及超详细解析,文中通过... 目录前言一、字符类型(Character)1、CHAR:定长字符数据类型2、VARCHAR2:变长字符数

使用Jackson进行JSON生成与解析的新手指南

《使用Jackson进行JSON生成与解析的新手指南》这篇文章主要为大家详细介绍了如何使用Jackson进行JSON生成与解析处理,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 核心依赖2. 基础用法2.1 对象转 jsON(序列化)2.2 JSON 转对象(反序列化)3.