Forget-free Continual Learning with Winning Subnetworks论文阅读+代码解析

本文主要是介绍Forget-free Continual Learning with Winning Subnetworks论文阅读+代码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本篇文章是来自ICML2022上的一篇,而且是由之前出名的FedWEIT的团队进行研究的,因此这篇文章中也存在着相似的影子,论文地址点这里。

一. 背景(简要介绍)

持续学习又被称为增量式学习,要求不断地接受数据样本并且不会产生灾难性遗忘。最广泛的3种类型为:基于正则化的持续学习,基于记忆重塑的持续学习以及基于动态架构的持续学习。然而,上述的方法都会造成新的内存压力,特别是对于记忆重塑和动态架构。因此,现在又产生了一种基于修建的方法,如下:
在这里插入图片描述
可以发现这些方法(a-c)都将模型进行了一些切分,让每个任务有对应的网络进行训练。

本文中,作者运用了彩票假设(Lottery Ticket Hypothesis),为每一个任务考虑一个子模型进行训练。

补充:彩票假设大概意思是当一个人买了足够多的彩票之后,其中必定有一张彩票是中奖的。对应于神经网络就是,在庞大的参数面前,我们可以从中提取一部分的参数形成子网络,而这个子网络能够表现的和主网络一样好。

二. Forget-Free Continual Learning with Winning SubNetworks

问题定义: 在持续学习中,存在着 T T T个任务,假设第 t t t个任务的数据集表示为 D t = { x i , t , y i , t } i = 1 n t \mathcal{D}_t=\{x_{i,t},y_{i,t}\}^{n_t}_{i=1} Dt={xi,t,yi,t}i=1nt,其中 n t n_t nt表示对应的样本数。假设神经网络为为 f ( . ; θ ) f(.;\theta) f(.;θ),那么在任务 t t t上我们优化目标为:
θ ∗ = min ⁡ θ 1 n t ∑ i = 1 n t L ( f ( x i , t ; θ ) , y i , t ) \theta^*=\min_{\theta}\frac{1}{n_t}\sum_{i=1}^{n_t}\mathcal{L}(f(x_{i,t};\theta),y_{i,t}) θ=θminnt1i=1ntL(f(xi,t;θ),yi,t)
为了留出学习未来任务的空间,可以找到获得同等甚至更好性能的子网络。给定网络参数 θ \theta θ,设定一个最优二进制掩码(mask) m ∗ m^* m用于提取最优的子网络,并且要求子网络的参数小于主网络,具体来说可以描述为:
m t ∗ = min ⁡ m t ∈ { 0 , 1 } ∣ θ ∣ 1 n t ∑ i = 1 n t L ( f ( x i , t ; θ ⊙ m t ) , y i , t ) − C subject to  ∣ m t ∗ ∣ ≤ c m_t^*=\min_{m_t\in\{0,1\}^{|\theta|}}\frac{1}{n_t}\sum_{i=1}^{n_t}\mathcal{L}(f(x_{i,t};\theta \odot m_t),y_{i,t}) -C \\ \text{subject to}\ |m_t^*| \leq c mt=mt{0,1}θminnt1i=1ntL(f(xi,t;θmt),yi,t)Csubject to mtc
其中 C = L ( f ( x i , t ; θ ) , y i , t ) C=\mathcal{L}(f(x_{i,t};\theta),y_{i,t}) C=L(f(xi,t;θ),yi,t)

2.1 Winning SubNetworks

假设可以给每一个网络权重 w w w进行打分,分值越高代表该网路对任务的贡献越大,之后就可以进行评估(这里作者其实就是大概介绍了他们的思路以及为啥要用子网络,没有什么特别的信息,具体的方法在下面介绍)而实现子网络,具体的图如下:
在这里插入图片描述
值得注意的是,新的任务也会用到之前任务学习过的参数,但为了不破坏之前的参数,因此不会选择去更新旧的参数。

2.2 具体的优化过程

有了子网络后,我们的优化目标变为:
min ⁡ θ , s L ( θ ⊙ m t ; D t ) \min_{\theta,s}\mathcal{L}(\theta \odot m_t;\mathcal{D}_t) θ,sminL(θmt;Dt)
此处 s s s表示给每个权重的打分。然而,这种普通的优化过程存在两个问题:(1)在新任务的训练时更新所有 θ \theta θ会干扰为以前任务分配的权重,(2)我们无法使用梯度更新分值 s s s。为了解决第一个问题,这里使用选择性地更新参数。具体来说,假设 M t − 1 = ∨ i = 1 t − 1 m i M_{t-1}=∨^{t-1}_{i=1}m_i Mt1=i=1t1mi表示之前所有任务的掩码集合,那么更新变为:
θ ← θ − η ( ∂ L ∂ θ ⊙ ( 1 − M t − 1 ) ) \theta \leftarrow \theta\ -\ \eta(\frac{\partial \mathcal{L}}{\partial \theta} \odot(1-M_{t-1})) θθ  η(θL(1Mt1))
这样就能保证冻结住那些已经被训练过的参数。对于第二个问题,可以使用top-c%进行分数的打分(这里到具体代码解释)。整体的算法如下:
在这里插入图片描述

2.3 掩码的编码过程

可以发现,上述需要存放掩码,这里作者使用每7位形成一个ASCII编码进行存储,减少存储量。(举个例子,假如现在掩码为0011000101000001010…,我们每7个进行存储,第一个就是0110000转换成十进制为42,对应于就是数字0),这样能大大减少空间。

三. 代码解析

作者的代码点这里。
上述两个关键的就是,实现子网络,这里代码为:在这里插入图片描述

这里是作者重写了一个全连接层,红框标出的就是掩码和参数的过程,那么对于每一个网络掩码的是如何确定的呢?可以发现其对应于GetSubnetFaster里面,我们具体来看看:
在这里插入图片描述
首先对应于forward来,这里scores对应的就是全连接层的参数 w w w(这里要取绝对值),sparsity是一个提前定义好的量,表示为稀疏度,在0-1之间,在进行计算的时候,首先运行到percentile中,我们使用稀疏度*参数个数得到k,然后根据k计算网络中的第k_val大的数字(也就是求k分数),之后再将比k_val大的变为1其余变为0。因此,其实这里就是用了最标准的剪枝算法,选择前k个最大的权值,而剩余的舍弃。这里就是作者利用提到的分数的计算规则,而注意到backward,在计算梯度的时候是直接将传入的梯度g直接传出,而在一个任务训练多轮中,每一次都会变化参数而导致分位数变化从而实现掩码的变化
第二个部分就简单了,那就是每次更新的参数只能是那些没有用过的,代码如下(train函数里面):
在这里插入图片描述
也就是依次找到那些被用过的参数,让他们的grad变为0即可。最后就是训练完一个任务后把他的掩码和之前的掩码合并:
在这里插入图片描述
这次的论文想法还是挺行的,而且和FedWEIT一样都使用了掩码,欢迎大家提出意见~

这篇关于Forget-free Continual Learning with Winning Subnetworks论文阅读+代码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/275284

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

解析C++11 static_assert及与Boost库的关联从入门到精通

《解析C++11static_assert及与Boost库的关联从入门到精通》static_assert是C++中强大的编译时验证工具,它能够在编译阶段拦截不符合预期的类型或值,增强代码的健壮性,通... 目录一、背景知识:传统断言方法的局限性1.1 assert宏1.2 #error指令1.3 第三方解决

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现