波斯公主选驸马,她是这么利用大数据和算法找男人的

2023-10-24 03:20

本文主要是介绍波斯公主选驸马,她是这么利用大数据和算法找男人的,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


《波斯公主选驸马》题,如下:

波斯公主到了适婚年龄,要选驸马。候选男子 100 名,都是公主没有见过的。百人以随机顺序,从公主面前逐一经过。每当一位男子在公主面前经过时,公主要么选他为驸马,要么不选。如果选他,其余那些还没有 登场的男子就都遣散回家,选驸马的活动也 over 了。如果不选,当下这名男子就离开,也就是 pass 掉此人,下一人登场。被 pass 掉的,公主不可以反悔再从选。规则是,公主必须在这百人中选出一人做驸马,也就是说,如果前 99 人公主都看不中的话,她必须选择第 100 名男子为驸马,不管他有多么丑陋。

任务是,给公主设计选择方法,让她有最高概率选到百人中最英俊的男子为驸马。

        说明一点是,没有任何选择方法能够保证公主一定选择到最帅的帅哥。对于任何选择方法,总存在某些出场的顺序,让公主与帅哥错过。所以,题目所问的,不是必胜的选法(因为不存在),而是概率最高的选法。

        因为并不是要讨论数学,我这里就直接给出答案了:最佳选法是 pass 掉最开始的 100/e 名男子(e = 2.718… 是自然对数,即 100/e 约等于 37)。但是记录下这 37 名男子中最英俊者。之后鱼贯而来的男子中,出现的第一位英俊程度超越所有前 37 人者,即为驸马。如果人都走光了,也没出现这么一位 Mr. Right,那么就只好选择第 100 位男子。

        这个最佳选法,后面有很有意思的数学推导。

        正解后面的思考方法

        数学的推论且不论,这个答案背后是一个可为广泛应用的思考方法。公主选择的难处在于她不知道这百人的英俊程度是怎样分布的,是在怎样一个范围 内。所以她最佳的策略是,pass 掉最初 37 位男子,但是把他们看成一个有代表性的 sample,从而了解这百人相貌的大致分布。然后在这个认知的基础上进行选择。

        真实的谈情说爱当然不是一个简单的选美。普通人也不能像波斯贵族那样要谁有谁。但是思维方法共通。假如你是一位女生,第一次恋爱的时候,也许你 觉得男朋友不够细腻,不解风情。但你无法判断的是,是否天下男生大多如此,还是你特别倒霉碰到这样的极品。你唯有试过三个五个后,才能够对男性这个物种有 个全局的判断。所以,当你和第一任男朋友分手后,大可不必悲天悯人,亦或对天下男人失望。正确的态度是:okay,我现在有一个 data point, 现在我来找些更多的 data points。

        花多长时间学习?

        找到多少 data points 才够呢?换句话说我们学习到什么时候才能够信任自己对世界的判断?以下这个小故事中,我们可以看出大自然是怎么解决这个问题的。

        1944 年冬天,二战进入尾声。德国人封锁了荷兰德占区的补给。1944-1945 年的冬天,被称为”hunger winter”(饥饿的冬天)。有四百五十万荷兰人遭受饥饿,一万八千人饿死。1945 年,德国战败,封锁也随之解除。

        但这个饥饿冬天所带来的影响却一直留存到几十年后。那些封锁期间怀着孩子的妇女,她们肚子里发育中的胚胎,虽无知觉,也经历了这场灾难。几十年后,当这些孩子成为 50 岁的中年人,科学家们发现他们会比之前,或者之后出生的荷兰孩子都更肥胖,更容易有心血管疾病。

        对此的一种解释是,还在妈妈肚子里的时候,我们的身体就在学习这是怎样一个世界:是个食物充足,衣食无忧的世界?还是一个有上顿没下顿的世界? 这些荷兰饥荒那年出生的婴儿,他们的身体学习到:“这是一个食物匮乏的世界”。哪怕他们成年之后,荷兰已经是一个富余的发达国家,他们的身体还是不忘早年 饥饿的经历,会尽力存储脂肪,准备着下一个饥饿冬天的到来。结果就是这个人群更容易肥胖,并且更容易患有与肥胖相关的心血管疾病。

        有意思的是,对食物丰富与否的学习,在 10 月怀胎中完成,居然之后几十年也无法扭转。这个学习的窗口,是我们的身体,我们的基因所决定的。孩子学东西快,是因为他们的身体和大脑就是 specialized 学习机器。有研究说,人脑中负责抽象思维的前额叶在 25 岁才定型。换句话说,25 岁以前,我们的思维,特别是那些高级的认知能力,还在不断变化着。而这其中很多的变化,就来自我们的环境。这种变化,就是我们在学习我们所在的,到底是怎 样一个世界;怎样的思维和行为,是在这个世界上行得通的。

        从人脑的发育看来,过了 25 岁,至少从生理上来说,这种学习就停止了。这个 deadline 取决于基因,而基因来源于千百万年的进化。千百万年中,人类的平均寿命是徘徊在 20-30 岁。这可能就是为什么我们的学习,从我们身体的设计上看来,是在 25 岁就截止了。

        我们无法影响自己生理、身体上的学习,但是有些事情的学习,却是我们可以影响的,而且应该去影响的。选择怎样的工作?居住在哪个城市?找什么样 的伴侣?这些似乎不是应该匆匆忙忙,赶着一个 deadline (特别是 25 岁的 deadline)去决定的事情。你会进行很多比较,才决定购买一辆汽车或者房子。而工作、伴侣,这些更重要的决定,你当然要更多比较比较,了解一下你是 在怎样的一个世界里,才做决定。

        也许你 30 岁了,没有婚配的对象,不喜欢正在做的工作,但有种种压力期待你“别折腾,安顿下来”。这压力可能来自于一个一直不给个人选择的社会传统,或者来自于一个 预期寿命只有 30 岁的进化压力。但是这一切都变了:社会已经有越来越多的选择余地,我们也可以预料之中的活到 80,90 岁。

        也许你要认真考虑一下波斯公主的问题:我是否应该继续收集 data points?还是已经到了要做终生决定的时候?

        回到波斯公主的题目

        波斯公主的题目至少还教了我们另一点,就是哪怕你的方法是最优,你也永远不可能是每次都得到最英俊的驸马。在最优化的选择方法下,公主也只有 40% 左右的可能性选择到最帅的男人。就是说,如果这样选择十次,每次这百名男子以随机顺序出现,其中有 6 次,公主都会选到不是最帅的驸马。

        生活就是有风险的,不可测的。这似乎是个打击,但也是一种释怀。尽人事,安天命。如果你按照一个正确的方法去做了,哪怕结果差强人意,这也并不是你的错。

        我学会的另一点是,如果我是作为被选的一方(就像那 100 名男子),timing 是至关重要的。以下是一个简单的多的题目:

        如果你是这百名男子中的一名,并且你能够决定自己出场的名次,你会选择在什么时候出场,以最大提高自己被选的概率?

        答案是第 38 名。你不会选择在 38 名之前,因为你被选的概率是零(假设我们的公主学过高等数学,知道最佳选法)。你也不会选择后于 38,因为你前面每多一个人,就意味着多了一分公主选上他的机会。

        如果你有一位意中人,你当然要努力去追求幸福,但你可能也要想一下,这是否是最好的 timing?

        37% 法则“实测”

        37% 法则的效果究竟如何呢?我们在计算机上编写程序模拟了当 n = 30 时利用 37% 法则进行选择的过程(如果 MM 始终未接受求爱者,则自动选择最后一名求爱者)。编号越小的男生越次,编号为 30 的男生则表示最佳选择。程序运行 10000 次之后,竟然有大约 4000 次选中最佳男生,可见 37% 法则确实有效啊。

波斯公主选驸马,她是这么利用大数据和算法找男人的

        计算机模拟 10000 次后得到的结果

        这个问题由数学家 Merrill M. Flood 在 1949 首次提出,这个问题被他取名为“未婚妻问题”。这个问题的精妙之处在于,在微积分界叱咤风云的自然底数 e,竟也出人意料地出现在了这个看似与它毫不相关的问题中。不知道此问题发表后,Geek 男女间会不会多了一种分手的理由:不好意思,你是那 37% 的人⋯⋯

        如何求出最优的 k 值?

        大数学家欧拉对一个神秘的数学常数 e ≈ 2.718 深有研究,这个数字和“拒人问题”竟然有着直接的联系。

        对于某个固定的 k,如果最适合的人出现在了第 i 个位置(k < i ≤ n),要想让他有幸正好被 MM 选中,就必须得满足前 i-1 个人中的最好的人在前 k 个人里,这有 k/(i-1) 的可能。考虑所有可能的 i,我们便得到了试探前 k 个男生之后能选中最佳男生的总概率 P (k):

波斯公主选驸马,她是这么利用大数据和算法找男人的

        用 x 来表示 k/n的值,并且假设n充分大,则上述公式可以写成:

波斯公主选驸马,她是这么利用大数据和算法找男人的

        对-x · ln x 求导,并令这个导数0,可以解出x的最优值,它就是欧拉研究的神秘常数的倒数——1/e!

        也就是说,如果你预计求爱者有n个人,你应该先拒绝掉前n/e个人,静候下一个比这些人都好的人。假设你一共会遇到大概 30 个求爱者,就应该拒绝掉前 30/e ≈ 30/2.718≈ 1 个求爱者,然后从第 12 个求爱者开始,一旦发现比前面 11 个求爱者都好的人,就果断接受他。由于 1/e 大约等于 37%,因此这条爱情大法也叫做 37% 法则。

        不过,37% 法则有一个小问题:如果最佳人选本来就在这 37% 的人里面,错过这 37% 的人之后,她就再也碰不上更好的了。但在游戏过程中,她并不知道最佳人选已经被拒,因此她会一直痴痴地等待。也就是说,MM 将会有 37% 的概率“失败退场”,或者以被迫选择最后一名求爱者的结局而告终。

这篇关于波斯公主选驸马,她是这么利用大数据和算法找男人的的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/272345

相关文章

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

MySQL大表数据的分区与分库分表的实现

《MySQL大表数据的分区与分库分表的实现》数据库的分区和分库分表是两种常用的技术方案,本文主要介绍了MySQL大表数据的分区与分库分表的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有... 目录1. mysql大表数据的分区1.1 什么是分区?1.2 分区的类型1.3 分区的优点1.4 分

Mysql删除几亿条数据表中的部分数据的方法实现

《Mysql删除几亿条数据表中的部分数据的方法实现》在MySQL中删除一个大表中的数据时,需要特别注意操作的性能和对系统的影响,本文主要介绍了Mysql删除几亿条数据表中的部分数据的方法实现,具有一定... 目录1、需求2、方案1. 使用 DELETE 语句分批删除2. 使用 INPLACE ALTER T

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

Redis 中的热点键和数据倾斜示例详解

《Redis中的热点键和数据倾斜示例详解》热点键是指在Redis中被频繁访问的特定键,这些键由于其高访问频率,可能导致Redis服务器的性能问题,尤其是在高并发场景下,本文给大家介绍Redis中的热... 目录Redis 中的热点键和数据倾斜热点键(Hot Key)定义特点应对策略示例数据倾斜(Data S

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Python实现将MySQL中所有表的数据都导出为CSV文件并压缩

《Python实现将MySQL中所有表的数据都导出为CSV文件并压缩》这篇文章主要为大家详细介绍了如何使用Python将MySQL数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到... python将mysql数据库中所有表的数据都导出为CSV文件到一个目录,并压缩为zip文件到另一个

SpringBoot整合jasypt实现重要数据加密

《SpringBoot整合jasypt实现重要数据加密》Jasypt是一个专注于简化Java加密操作的开源工具,:本文主要介绍详细介绍了如何使用jasypt实现重要数据加密,感兴趣的小伙伴可... 目录jasypt简介 jasypt的优点SpringBoot使用jasypt创建mapper接口配置文件加密