0基础学习PyFlink——使用PyFlink的SQL进行字数统计

2023-10-24 00:01

本文主要是介绍0基础学习PyFlink——使用PyFlink的SQL进行字数统计,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在《0基础学习PyFlink——Map和Reduce函数处理单词统计》和《0基础学习PyFlink——模拟Hadoop流程》这两篇文章中,我们使用了Python基础函数实现了字(符)统计的功能。这篇我们将切入PyFlink,使用这个框架实现字数统计功能。

PyFlink安装

安装Python

sudo apt install python3.10
sudo ln -s /usr/bin/python3.10 /usr/bin/python

安装虚拟环境

sudo apt install python3.10-venv

创建工程所在文件夹,并创建虚拟环境

mkdir pyflink-test
cd pyflink-test
python -m venv .env

进入虚拟环境,并安装PyFlink

source .env/bin/activate
pip3.10 install apache-flink

统计代码

Flink为开发者提供了如下不同层级的抽象。本篇我们将尽量使用SQL来实现功能。
在这里插入图片描述

创建环境

执行环境用于设置任务的属性(batch还是stream),以及一些运行时参数(parallelism.default等)。
和Hadoop不同的是,Flink是流批一体(既可以处理流,也可以处理批处理)的引擎,而前者是批处理引擎。
批处理很好理解,即给一批数据,我们一次性、成批处理完成。
而流处理则是指,数据源源不断进入引擎,没有尽头。
本文不对此做过多展开,只要记得本例使用的是批处理模式(in_batch_mode)即可。

import argparse
import logging
import sysfrom pyflink.common import Configuration
from pyflink.table import (EnvironmentSettings, TableEnvironment)def word_count(input_path):config = Configuration()# write all the data to one fileconfig.set_string('parallelism.default', '1')env_settings = EnvironmentSettings \.new_instance() \.in_batch_mode() \.with_configuration(config) \.build()t_env = TableEnvironment.create(env_settings)

Source

在前两篇文章中,我们使用内存中的常规结构体,如dict等来保存Map过后的数据。而本文介绍的SQL方式,则是通过Table(表)的形式来存储,即输入的数据会Map到一张表中

    # define the sourcemy_source_ddl = """create table source (word STRING) with ('connector' = 'filesystem','format' = 'csv','path' = '{}')""".format(input_path)t_env.execute_sql(my_source_ddl).print()tab = t_env.from_path('source')

这张表只有一个字段——String类型的word。它用于记录被切分后的一个个字符串。
这儿有个关键字with。它可以用于描述数据读写相关信息,即完成数据读写相关的设置。
connector用于指定连接方式,比如filesystem是指文件系统,即数据读写目标是一个文件;jdbc则是指一个数据库,比如mysql;kafka则是指一个Kafka服务。
format用于指定如何把二进制数据映射到表的列上。比如CSV,则是用“,”进行列的切割。

Execute

    # execute insertmy_select_ddl = """select word, count(1) as `count`from sourcegroup by word"""t_env.execute_sql(my_select_ddl).wait()

上述SQL我们按source表中的word字段聚类,统计每个字符出现的个数。
完整输出如下

Using Any for unsupported type: typing.Sequence[~T]
No module named google.cloud.bigquery_storage_v1. As a result, the ReadFromBigQuery transform *CANNOT* be used with `method=DIRECT_READ`.
OK
+--------------------------------+----------------------+
|                           word |                count |
+--------------------------------+----------------------+
|                              A |                    3 |
|                              B |                    1 |
|                              C |                    2 |
|                              D |                    2 |
|                              E |                    1 |
+--------------------------------+----------------------+
5 rows in set

完整代码

# sql_print.py
import argparse
import logging
import sysfrom pyflink.common import Configuration
from pyflink.table import (EnvironmentSettings, TableEnvironment)def word_count(input_path):config = Configuration()# write all the data to one fileconfig.set_string('parallelism.default', '1')env_settings = EnvironmentSettings \.new_instance() \.in_batch_mode() \.with_configuration(config) \.build()t_env = TableEnvironment.create(env_settings)# define the sourcemy_source_ddl = """create table source (word STRING) with ('connector' = 'filesystem','format' = 'csv','path' = '{}')""".format(input_path)t_env.execute_sql(my_source_ddl).print()tab = t_env.from_path('source')my_select_ddl = """select word, count(1) as `count`from sourcegroup by word"""t_env.execute_sql(my_select_ddl).print()if __name__ == '__main__':logging.basicConfig(stream=sys.stdout, level=logging.INFO, format="%(message)s")parser = argparse.ArgumentParser()parser.add_argument('--input',dest='input',required=False,help='Input file to process.')argv = sys.argv[1:]known_args, _ = parser.parse_known_args(argv)word_count(known_args.input)

测试的输入文件

“A”,
“B”,
“C”,
“D”,
“A”,
“E”,
“C”,
“D”,
“A”,

运行的指令是

python sql_print.py --input input1.csv

参考资料

  • https://nightlies.apache.org/flink/flink-docs-master/zh/docs/concepts/overview/

这篇关于0基础学习PyFlink——使用PyFlink的SQL进行字数统计的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/271338

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

SQL中的外键约束

外键约束用于表示两张表中的指标连接关系。外键约束的作用主要有以下三点: 1.确保子表中的某个字段(外键)只能引用父表中的有效记录2.主表中的列被删除时,子表中的关联列也会被删除3.主表中的列更新时,子表中的关联元素也会被更新 子表中的元素指向主表 以下是一个外键约束的实例展示

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

如何去写一手好SQL

MySQL性能 最大数据量 抛开数据量和并发数,谈性能都是耍流氓。MySQL没有限制单表最大记录数,它取决于操作系统对文件大小的限制。 《阿里巴巴Java开发手册》提出单表行数超过500万行或者单表容量超过2GB,才推荐分库分表。性能由综合因素决定,抛开业务复杂度,影响程度依次是硬件配置、MySQL配置、数据表设计、索引优化。500万这个值仅供参考,并非铁律。 博主曾经操作过超过4亿行数据

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件