【转】Python 量化投资实战教程(3) —A股回测MACD策略

2023-10-23 22:40

本文主要是介绍【转】Python 量化投资实战教程(3) —A股回测MACD策略,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

 

上一回,我们基于简单的MACD策略回测了华正新材这只股票的收益率,发现效果非常好,收益达到了26.9%,但这个策略放到其他股票上会不会有这么高的收益呢?我们今天就来试试看这个策略在不考虑基本面,只考虑技术面的情况下,在A股上的平均表现。

为了回测该策略在A股上的平均表现,我们从A股随机选取了1000只股票,使用MACD策略回测其2010年1月1日至今,使用MACD策略进行投资的表现。其中,以一万元作为本金,佣金为万分之五,每次交易100股。

 

最终发现,使用该策略最终亏损的股票有626只,盈利的有372只,有2只股票数据不足被去除。最高盈利有84%,最差亏损也达-34%。盈利超过10%的股票有30只,亏损超过30%的有29只。并总结了这30只盈利超过10%的股票的特点。

下面是用Python和backtrader分析这些股票的详细教程。在公众号后台回复:量化投资3 可获得本文全部代码及数据。本系列文章github仓库:
https://github.com/Ckend/pythondict-quant

1.准备

开始之前,你要确保Python和pip已经成功安装在电脑上噢,如果没有,请访问这篇文章:超详细Python安装指南 进行安装。如果你用Python的目的是数据分析,可以直接安装Anaconda:Python数据分析与挖掘好帮手—Anaconda

Windows环境下打开Cmd(开始—运行—CMD),苹果系统环境下请打开Terminal(command+空格输入Terminal),准备开始输入命令安装依赖。

 

当然,我更推荐大家用VSCode编辑器,把本文代码Copy下来,在编辑器下方的终端运行命令安装依赖模块,多舒服的一件事啊:Python 编程的最好搭档—VSCode 详细指南。

在终端输入以下命令安装我们所需要的依赖模块:

 

 
pip install backtrader

看到 Successfully installed xxx 则说明安装成功。

2.改造策略

最方便的回测股票数据的形式是将股票数据存储在MySQL数据库中,每次回测从数据库中拉取数据即可。但为了能够方便地让大家复现实验,我们将这些股票的数据以文件的形式存储下来。

策略上,我们不需要做改变,但是需要将运行策略的这一部分封装起来,用于批量执行策略:

 

def run_cerebro(stock_file, result):
    """
    运行策略
    :param stock_file: 股票数据文件位置
    :param result: 回测结果存储变量
    """
 
    cerebro = bt.Cerebro()
    cerebro.addstrategy(TestStrategy)
    # 加载数据到模型中
    data = bt.feeds.GenericCSVData(
        dataname=stock_file,
        fromdate=datetime.datetime(2010, 1, 1),
        todate=datetime.datetime(2020, 4, 25),
        dtformat='%Y%m%d',
        datetime=2,
        open=3,
        high=4,
        low=5,
        close=6,
        volume=10,
        reverse=True
    )
    cerebro.adddata(data)
    # 本金10000,每次交易100股
    cerebro.broker.setcash(10000)
    cerebro.addsizer(bt.sizers.FixedSize, stake=100)
    # 万五佣金
    cerebro.broker.setcommission(commission=0.0005)
    # 运行策略
    cerebro.run()
    # 剩余本金
    money_left = cerebro.broker.getvalue()
    # 获取股票名字
    stock_name = stock_file.split('\\')[-1].split('.csv')[0]
    # 将最终回报率以百分比的形式返回
    result[stock_name] = float(money_left - 10000) / 10000

然后遍历所有股票,运行策略,结果保存在result变量中:

 

files_path = 'stocks\\'
result = []
# 遍历所有股票数据
for stock in os.listdir(files_path):
    modpath = os.path.dirname(os.path.abspath(sys.argv[0]))
    datapath = os.path.join(modpath, files_path + stock)
    print(datapath)
    try:
        run_cerebro(datapath, result)
    except Exception as e:
        print(e)

最后,我们使用pickle将变量结果保存为文件,以方便后续分析:

 

f = open('./batch_macd_result.txt', 'wb')
pickle.dump(result, f)
f.close()

随后,我们就可以随意分析这个结果,而不用重新跑一遍策略了。

3.结果分析

接下来,使用最简单的方法分析结果:

 

import pickle
# 加载保存的结果
f = open('./batch_macd_result.txt', 'rb')
data = pickle.load(f)
f.close()
# 计算
pos = []
neg = []
ten_pos = []
ten_neg = []
for result in data:
    res = data[result]
    if res > 0:
        pos.append(res)
    else:
        neg.append(res)
    if res > 0.1:
        ten_pos.append(result)
    elif res < -0.1:
        ten_neg.append(result)
max_stock = max(data, key=data.get)
print(f'最高收益的股票: {max_stock}, 达到 {data[max_stock]}')
print(f'正收益数量: {len(pos)}, 负收益数量:{len(neg)}')
print(f'+10%数量: {len(ten_pos)}, -10%数量:{len(ten_neg)}')
print(f'收益10%以上的股票: {ten_pos}')

随机抽取的1000千股票,回测结果如下:

 

D:\CODE\stock\backtrader&gt;python analysis.py
最高收益 600745.SH, 达到 0.8413365999999998
正收益数量: 372, 负收益数量:626
+10%数量: 30, -10%数量:29
收益10%以上的股票: ['000403.SZ', '000858.SZ', '002271.SZ', '002311.SZ', '002475.SZ', '002555.SZ', '002568.SZ', '002605.SZ', '002714.SZ', '300007.SZ', '300136.SZ', '300220.SZ', '300347.SZ', '300476.SZ', '300482.SZ', '300566.SZ', '300601.SZ', '300613.SZ', '300630.SZ', '300725.SZ', '600570.SH', '600585.SH', '600745.SH', '601231.SH', '601799.SH', '603297.SH', '603378.SH', '603655.SH', '603737.SH', '603823.SH']

显然,在不考虑基本面的情况下,该策略的收益并不高,因此不建议用该策略进行A股整体回测并作交易。但是我们可以观察一下收益10%以上的股票的基本面特点。

你会发现大部分使用MACD策略收益10%以上的股票,其同比年利润增长都是大于0的,只有2只股票例外。此外,大部分股票平均年利润同比增长都在20%到30%左右,而且不会有太大的波动。

所以,MACD策略只有在股票的基本面优秀的情况下,才能发挥最大的价值。而在股票基本面比较差的情况下,这个策略的表现非常差,因此对于投机者而言,它并不是一个好的策略,但是对于价值投资者而言,其具备一定的参考价值。

这篇关于【转】Python 量化投资实战教程(3) —A股回测MACD策略的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/270925

相关文章

基于Python打造一个可视化FTP服务器

《基于Python打造一个可视化FTP服务器》在日常办公和团队协作中,文件共享是一个不可或缺的需求,所以本文将使用Python+Tkinter+pyftpdlib开发一款可视化FTP服务器,有需要的小... 目录1. 概述2. 功能介绍3. 如何使用4. 代码解析5. 运行效果6.相关源码7. 总结与展望1

使用Python实现一键隐藏屏幕并锁定输入

《使用Python实现一键隐藏屏幕并锁定输入》本文主要介绍了使用Python编写一个一键隐藏屏幕并锁定输入的黑科技程序,能够在指定热键触发后立即遮挡屏幕,并禁止一切键盘鼠标输入,这样就再也不用担心自己... 目录1. 概述2. 功能亮点3.代码实现4.使用方法5. 展示效果6. 代码优化与拓展7. 总结1.

使用Python开发一个简单的本地图片服务器

《使用Python开发一个简单的本地图片服务器》本文介绍了如何结合wxPython构建的图形用户界面GUI和Python内建的Web服务器功能,在本地网络中搭建一个私人的,即开即用的网页相册,文中的示... 目录项目目标核心技术栈代码深度解析完整代码工作流程主要功能与优势潜在改进与思考运行结果总结你是否曾经

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

Ubuntu中远程连接Mysql数据库的详细图文教程

《Ubuntu中远程连接Mysql数据库的详细图文教程》Ubuntu是一个以桌面应用为主的Linux发行版操作系统,这篇文章主要为大家详细介绍了Ubuntu中远程连接Mysql数据库的详细图文教程,有... 目录1、版本2、检查有没有mysql2.1 查询是否安装了Mysql包2.2 查看Mysql版本2.

Python将博客内容html导出为Markdown格式

《Python将博客内容html导出为Markdown格式》Python将博客内容html导出为Markdown格式,通过博客url地址抓取文章,分析并提取出文章标题和内容,将内容构建成html,再转... 目录一、为什么要搞?二、准备如何搞?三、说搞咱就搞!抓取文章提取内容构建html转存markdown

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

Python FastAPI+Celery+RabbitMQ实现分布式图片水印处理系统

《PythonFastAPI+Celery+RabbitMQ实现分布式图片水印处理系统》这篇文章主要为大家详细介绍了PythonFastAPI如何结合Celery以及RabbitMQ实现简单的分布式... 实现思路FastAPI 服务器Celery 任务队列RabbitMQ 作为消息代理定时任务处理完整

Python Websockets库的使用指南

《PythonWebsockets库的使用指南》pythonwebsockets库是一个用于创建WebSocket服务器和客户端的Python库,它提供了一种简单的方式来实现实时通信,支持异步和同步... 目录一、WebSocket 简介二、python 的 websockets 库安装三、完整代码示例1.

揭秘Python Socket网络编程的7种硬核用法

《揭秘PythonSocket网络编程的7种硬核用法》Socket不仅能做聊天室,还能干一大堆硬核操作,这篇文章就带大家看看Python网络编程的7种超实用玩法,感兴趣的小伙伴可以跟随小编一起... 目录1.端口扫描器:探测开放端口2.简易 HTTP 服务器:10 秒搭个网页3.局域网游戏:多人联机对战4.