领先一步,效率翻倍:PieCloudDB Database 预聚集特性让查询速度飞起来!

本文主要是介绍领先一步,效率翻倍:PieCloudDB Database 预聚集特性让查询速度飞起来!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在大数据时代,如何有效地管理和处理海量数据成为了企业面临的核心挑战。为此,拓数派推出了首款数据计算引擎 PieCloudDB Database,作为一款全新的云原生虚拟数仓,旨在提供更高效、更灵活的数据处理解决方案。

PieCloudDB 的设计理念源于对用户使用体验和查询效率的深度理解。在实现存算分离的同时,PieCloudDB 专门设计和打造了全新的存储引擎「简墨」等模块。针对云场景和分析型场景,PieCloudDB 还设计了高效的预聚集(Pre-Aggregate)特性。本文将详细介绍 PieCloudDB 如何运用预聚集技术优化数据处理流程,改善用户体验。

作为云原生虚拟数仓,PieCloudDB 充分借助云计算所提供的基础设施服务,包括大规模分布式集群、虚拟机、容器等。这些特性使得 PieCloudDB 能更好地适应动态的和不断变化的工作负载需求。同时,PieCloudDB 也积极拓展其自身的特性,实现高可用、易扩展和弹性伸缩,以满足企业不断增长的业务需求。

PieCloudDB 实现了一个重要创新功能:预聚集(Pre-Aggregate)。 该功能通过 PieCloudDB 的全新的存储引擎「简墨」(JANM),在数据插入时即时计算数据列的 Aggregate 信息,并将其预先保存以供后续使用。这种方法摒弃了在查询时进行复杂计算的传统方式,从而大大提升了查询速度。此外,由于聚合数据保存在文件中,可以实现快速访问并直接应用于查询。

PieCloudDB 会根据用户的查询自动生成带有 Pre-Aggregate 的计划,使得查询过程尽可能地快速且准确。 当需要聚合数据时,系统会检查预存储的聚合值,并直接读取符合条件的 Aggregate 数据。这样避免了查询过程中扫描整个数据集的需求,可以大幅提升查询速度。

对于部分满足条件的块,PieCloudDB 将会回归原来的处理方式计算 Aggregate 值。 这样既能利用已经预聚合的数据,又只需计算缺少的部分,从而降低计算成本并提高运算效率。

1 预聚集的原理

为了能够增加 Aggregate 的查询性能,PieCloudDB 采用了以「空间」换取「时间」的策略,在写入数据的时候,在存储层中将相关的 Aggregate 进行预先计算并保存,从而在查询的时候可以快速找到需要的 Aggregate 数据。

上面解决了 Aggregate 数据来源问题,下面将介绍如何拿到预先计算的 Aggregate 数据。为了能够实现正确获取下推的 Aggregate 数据,PieCloudDB 的优化器与执行器被进一步改造,增加了两个新的 Pre-Aggregate 计算节点。改造前后的计划树(plan tree) 的对比如下图所示:

改造前后 plan tree 对比图

存储引擎「简墨」会在数据插入时,即时更新 Aggregate 信息。在上图中的 Pre-Aggregate 计算节点会从 AM(access method)中取出预先计算的 Aggregate 数据,如果没有找到合适的 Aggregate 数据,Pre-Aggregate 计算节点也会从 AM 中找出满足条件的 tuple 计算出对应的 Aggregate 数据,返回给上层计算节点使用。这样就解决了怎么正确找到下推的 Aggregate 数据的问题。

Pre-Aggregate 是 OLAP 优化技术中 Zone Maps 的具体实现。即预先计算一批元组属性值的聚合并预先保存,数据库检查预计算的聚集信息决定是否要访问该 block。即上面所述的如果找到可用的 Aggregate 数据则直接返回,否则访问该 block 检索具体元组。

对于带条件的 Pre-Aggregate 来说,其效果取决于预先计算所涉及的数据范围。PieCloudDB 将预聚集范围缩小至块文件,针对每个块文件分别进行预计算存储,从而保证带条件的预聚集查询效果。

2 预聚集的使用演示

下面给出了如何开启 Preagg Block Scan 以及支持 Block Skipping 的 Preagg Bitmap Block Scan 的使用方式。最后给出了对应的性能对比图。

2.1 Preagg Block Scan 使用方式

-- 创建 t 表
create table t(a int, b int, c int);-- 写入三行数据
insert into t values(1,2,3);
insert into t values(3,3,5);
insert into t values(4,4,6);-- 开启 preagg,默认是开启的
set pdb_enable_preagg = on;-- 执行如下的 query
explain (costs off) select sum(b), avg(c), count(*) from t;QUERY PLAN
------------------------------------------------Finalize Aggregate->  Gather Motion 3:1  (slice1; segments: 3)->  Pre-Aggregate Block Scan on tOptimizer: Postgres query optimizer
(4 rows)-- 开启后的执行结果
select sum(b), avg(c), count(*) from t;sum |        avg         | count
-----+--------------------+-------9 | 4.6666666666666667 |     3
(1 row)-- 关闭 preagg 
set pdb_enable_preagg = off;-- 执行同一条 query
explain (costs off) select sum(b), avg(c), count(*) from t;QUERY PLAN
------------------------------------------------Aggregate->  Gather Motion 3:1  (slice1; segments: 3)->  Seq Scan on tOptimizer: Postgres query optimizer
(4 rows)-- 关闭后的执行结果
select sum(b), avg(c), count(*) from t;sum |        avg         | count
-----+--------------------+-------9 | 4.6666666666666667 |     3
(1 row)

2.2 Preagg Bitmap Block Scan 使用方式

create table t(a int, b int);
insert into t values(generate_series(1, 20), generate_series(100, 120));
insert into t values(generate_series(21, 60), generate_series(121, 160));-- 开启 preagg,默认是开启的
set pdb_enable_preagg = on;
-- 下面是开启 Pre-Aggregate Bitmap Block Scan 的几个 guc
set enable_seqscan = off;
set enable_bitmapscan = on;
set enable_indexscan = on;-- 执行如下的 query
explain (costs off) select max(a), sum(a) from t where a > 10 and a < 50;QUERY PLAN
---------------------------------------------------------------Finalize Aggregate->  Gather Motion 3:1  (slice1; segments: 3)->  Partial Aggregate->  Pre-Aggregate Bitmap Block Scan on tRecheck Cond: ((a > 10) AND (a < 50))->  Bitmap Index Scan on tIndex Cond: ((a > 10) AND (a < 50))Optimizer: Postgres query optimizer
(8 rows)-- 开启后的执行结果
select max(a), sum(a) from t where a > 10 and a < 50;max | sum
-----+------49 | 1170
(1 row)-- 关闭 preagg 
set pdb_enable_preagg = off;-- 执行同一条 query
explain (costs off) select max(a), sum(a) from t where a > 10 and a < 50;QUERY PLAN
---------------------------------------------------------------Finalize Aggregate->  Gather Motion 3:1  (slice1; segments: 3)->  Partial Aggregate->  Bitmap Heap Scan on tRecheck Cond: ((a > 10) AND (a < 50))->  Bitmap Index Scan on tIndex Cond: ((a > 10) AND (a < 50))Optimizer: Postgres query optimizer
(8 rows)-- 关闭后的执行结果
select max(a), sum(a) from t where a > 10 and a < 50;max | sum
-----+------49 | 1170
(1 row)

2.3 性能对比

测试表:

create table preaggdata (a int, b int);

测试语句:

explain analyze select sum(a), avg(a), count(*), max(b) from preaggdata;

耗时对比图如下所示:

耗时对比图

从上面的测试数据和对比图可以看出,未开启 Pre-Agg 时,随着数据量的增大,耗时不断增大,且增加的速度也会越来越快;而开启 Pre-Agg 时,耗时是平稳的增长的,增长的速度也不快。当数据量达到 10000K 时,实现了近 28 倍的速度提升。

3 预聚集未来演变之路

目前,Pre-Aggregate 采用「空间」换「时间」的策略来提升性能效率。为了扩大 Pre-Aggregate 的应用范围,优化用户体验,我们将不断推动技术研发,扩大应用场景,并提供更加丰富、多元的功能。

无论是通过优化数据处理方式,拓展支持的函数类型,还是引进新的查询处理机制,我们都在锲而不舍地努力实现这一目标。相信很快,Pre-Aggregate 将能够为复杂的查询场景提供更高效、更精准的解决方案,从而逐步深化其在数据分析和处理领域的应用影响力。

这篇关于领先一步,效率翻倍:PieCloudDB Database 预聚集特性让查询速度飞起来!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/269590

相关文章

SQL中的外键约束

外键约束用于表示两张表中的指标连接关系。外键约束的作用主要有以下三点: 1.确保子表中的某个字段(外键)只能引用父表中的有效记录2.主表中的列被删除时,子表中的关联列也会被删除3.主表中的列更新时,子表中的关联元素也会被更新 子表中的元素指向主表 以下是一个外键约束的实例展示

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

如何去写一手好SQL

MySQL性能 最大数据量 抛开数据量和并发数,谈性能都是耍流氓。MySQL没有限制单表最大记录数,它取决于操作系统对文件大小的限制。 《阿里巴巴Java开发手册》提出单表行数超过500万行或者单表容量超过2GB,才推荐分库分表。性能由综合因素决定,抛开业务复杂度,影响程度依次是硬件配置、MySQL配置、数据表设计、索引优化。500万这个值仅供参考,并非铁律。 博主曾经操作过超过4亿行数据

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

MySQL数据库宕机,启动不起来,教你一招搞定!

作者介绍:老苏,10余年DBA工作运维经验,擅长Oracle、MySQL、PG、Mongodb数据库运维(如安装迁移,性能优化、故障应急处理等)公众号:老苏畅谈运维欢迎关注本人公众号,更多精彩与您分享。 MySQL数据库宕机,数据页损坏问题,启动不起来,该如何排查和解决,本文将为你说明具体的排查过程。 查看MySQL error日志 查看 MySQL error日志,排查哪个表(表空间

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份

[MySQL表的增删改查-进阶]

🌈个人主页:努力学编程’ ⛅个人推荐: c语言从初阶到进阶 JavaEE详解 数据结构 ⚡学好数据结构,刷题刻不容缓:点击一起刷题 🌙心灵鸡汤:总有人要赢,为什么不能是我呢 💻💻💻数据库约束 🔭🔭🔭约束类型 not null: 指示某列不能存储 NULL 值unique: 保证某列的每行必须有唯一的值default: 规定没有给列赋值时的默认值.primary key:

MySQL-CRUD入门1

文章目录 认识配置文件client节点mysql节点mysqld节点 数据的添加(Create)添加一行数据添加多行数据两种添加数据的效率对比 数据的查询(Retrieve)全列查询指定列查询查询中带有表达式关于字面量关于as重命名 临时表引入distinct去重order by 排序关于NULL 认识配置文件 在我们的MySQL服务安装好了之后, 会有一个配置文件, 也就

Java 连接Sql sever 2008

Java 连接Sql sever 2008 /Sql sever 2008 R2 import java.sql.Connection; import java.sql.DriverManager; import java.sql.ResultSet; import java.sql.Statement; public class TestJDBC