COCO数据集标注框的读取及badcase analyse

2023-10-23 16:59

本文主要是介绍COCO数据集标注框的读取及badcase analyse,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目的:查看badcase的错误的时候的框大小值。

本地调试程序至关重要,不然每次都要用服务器print,非常耗时耗力。

macOS上PyCharm本地配置Anaconda环境

博主代码地址:https://github.com/Xingxiangrui/multi_label_badcase_analyse/blob/master/badcase_analyse.py

目录

一、coco的标签

1.1 coco标注的类型

1.2 每种json内部

1.3 Object Instance

二、标签的加载

2.1 标签的加载

2.2 coco类别标签

三、创建直方图以及写入

3.1 创建直方图

3.2 plt.hist

3.3 创建直方图

3.4 plt图像存储

3.4 直方图的值

四、图片URL

4.1 标注的格式

4.2 添加输出badcase的URL

4.3 ULR的存储

4.4 本地print


一、coco的标签

1.1 coco标注的类型

COCO通过大量使用Amazon Mechanical Turk来收集数据。COCO数据集现在有3种标注类型:object instances(目标实例), object keypoints(目标上的关键点), 和image captions(看图说话),使用JSON文件存储。

$ ls
captions_train2014.json  instances_train2014.json  person_keypoints_train2014.json
captions_val2014.json    instances_val2014.json    person_keypoints_val2014.json

1.2 每种json内部

三种文件共享object instances(目标实例)、object keypoints(目标上的关键点)、image captions(看图说话)这3种类型共享这些基本类型:info、image、license

{"info": info,"licenses": [license],"images": [image],"annotations": [annotation],
}info{"year": int,"version": str,"description": str,"contributor": str,"url": str,"date_created": datetime,
}
license{"id": int,"name": str,"url": str,
} 
image{"id": int,"width": int,"height": int,"file_name": str,"license": int,"flickr_url": str,"coco_url": str,"date_captured": datetime,
}

1.3 Object Instance

目标实例,这里面有相应的bbox信息,

分为下面这些段落

{"info": info,"licenses": [license],"images": [image],"annotations": [annotation],"categories": [category]
}

其中的annotations为:

annotation{"id": int,    "image_id": int,"category_id": int,"segmentation": RLE or [polygon],"area": float,"bbox": [x,y,width,height],"iscrowd": 0 or 1,
}

包括了bbox,即标注框的坐标,以及area,标注区域的面积。

二、标签的加载

https://blog.csdn.net/banjuanshu/article/details/78370225

2.1 标签的加载

加载之后,会像dict一样。

        with open(self.area_annotation_document) as f:print('loading:',self.area_annotation_document)instances_val = json.load(f)print('loading done.')

其中annotations是对图片中物体标注的数据集,categories是所有物体的分类集,images是原始图片的信息

2.2 coco类别标签

category id

正常网络预测是80类,编写程序print出相应的预测。

    def coco_categories_names(self):# load json names idwith open(self.area_annotation_document) as f:print('loading:',self.area_annotation_document)instances_val = json.load(f)print('loading done.')coco_categories=instances_val['categories']# load names idwith open('sk_spectral_cluster/coco_names.pkl', 'rb') as f:print("loading coco_names.pkl")names = pickle.load(f)print('names',names)print('coco json categories id',coco_categories)

 网络预测结果对应的names

names ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 
'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 
'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 
'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 
'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball 
glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 
'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 
'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote','keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']

coco labels,与前面的names顺序一致,但是id一共有90类。

coco json categories id [{'supercategory': 'person', 'id': 1, 'name': 'person'}, {'supercategory': 'vehicle', 'id': 2, 'name': 'bicycle'}, {'supercategory': 
'vehicle', 'id': 3, 'name': 'car'}, {'supercategory': 'vehicle', 'id': 4, 'name': 'motorcycle'}, {'supercategory': 'vehicle', 'id': 5, 'name': 'airplane'}, 
{'supercategory': 'vehicle', 'id': 6, 'name': 'bus'}, {'supercategory': 'vehicle', 'id': 7, 'name': 'train'}, {'supercategory': 'vehicle', 'id': 8, 'name': 'truck'}, 
{'supercategory': 'vehicle', 'id': 9, 'name': 'boat'}, {'supercategory': 'outdoor', 'id': 10, 'name': 'traffic light'}, {'supercategory': 'outdoor', 'id': 11, 'name': 
'fire hydrant'}, {'supercategory': 'outdoor', 'id': 13, 'name': 'stop sign'}, {'supercategory': 'outdoor', 'id': 14, 'name': 'parking meter'}, {'supercategory': 
'outdoor', 'id': 15, 'name': 'bench'}, {'supercategory': 'animal', 'id': 16, 'name': 'bird'}, {'supercategory': 'animal', 'id': 17, 'name': 'cat'}, 
{'supercategory': 'animal', 'id': 18, 'name': 'dog'}, {'supercategory': 'animal', 'id': 19, 'name': 'horse'}, {'supercategory': 'animal', 'id': 20, 'name': 'sheep'},{'supercategory': 'animal', 'id': 21, 'name': 'cow'}, {'supercategory': 'animal', 'id': 22, 'name': 'elephant'}, {'supercategory': 'animal', 'id': 23, 'name': 
'bear'}, {'supercategory': 'animal', 'id': 24, 'name': 'zebra'}, {'supercategory': 'animal', 'id': 25, 'name': 'giraffe'}, {'supercategory': 'accessory', 'id': 27, 
'name': 'backpack'}, {'supercategory': 'accessory', 'id': 28, 'name': 'umbrella'}, {'supercategory': 'accessory', 'id': 31, 'name': 'handbag'}, {'supercategory': 
'accessory', 'id': 32, 'name': 'tie'}, {'supercategory': 'accessory', 'id': 33, 'name': 'suitcase'}, {'supercategory': 'sports', 'id': 34, 'name': 'frisbee'}, 
{'supercategory': 'sports', 'id': 35, 'name': 'skis'}, {'supercategory': 'sports', 'id': 36, 'name': 'snowboard'}, {'supercategory': 'sports', 'id': 37, 'name': 
'sports ball'}, {'supercategory': 'sports', 'id': 38, 'name': 'kite'}, {'supercategory': 'sports', 'id': 39, 'name': 'baseball bat'}, {'supercategory': 
'sports', 'id': 40, 'name': 'baseball glove'}, {'supercategory': 'sports', 'id': 41, 'name': 'skateboard'}, {'supercategory': 'sports', 'id': 42, 'name': 
'surfboard'}, {'supercategory': 'sports', 'id': 43, 'name': 'tennis racket'}, {'supercategory': 'kitchen', 'id': 44, 'name': 'bottle'}, {'supercategory': 
'kitchen', 'id': 46, 'name': 'wine glass'}, {'supercategory': 'kitchen', 'id': 47, 'name': 'cup'}, {'supercategory': 'kitchen', 'id': 48, 'name': 'fork'}, 
{'supercategory': 'kitchen', 'id': 49, 'name': 'knife'}, {'supercategory': 'kitchen', 'id': 50, 'name': 'spoon'}, {'supercategory': 'kitchen', 'id': 51, 
'name': 'bowl'}, {'supercategory': 'food', 'id': 52, 'name': 'banana'}, {'supercategory': 'food', 'id': 53, 'name': 'apple'}, {'supercategory': 'food', 
'id': 54, 'name': 'sandwich'}, {'supercategory': 'food', 'id': 55, 'name': 'orange'}, {'supercategory': 'food', 'id': 56, 'name': 'broccoli'}, 
{'supercategory': 'food', 'id': 57, 'name': 'carrot'}, {'supercategory': 'food', 'id': 58, 'name': 'hot dog'}, {'supercategory': 'food', 'id': 59, 'name': 'pizza'},{'supercategory': 'food', 'id': 60, 'name': 'donut'}, {'supercategory': 'food', 'id': 61, 'name': 'cake'}, {'supercategory': 'furniture', 'id': 62, 'name': 
'chair'}, {'supercategory': 'furniture', 'id': 63, 'name': 'couch'}, {'supercategory': 'furniture', 'id': 64, 'name': 'potted plant'}, {'supercategory':'furniture', 'id': 65, 'name': 'bed'}, {'supercategory': 'furniture', 'id': 67, 'name': 'dining table'}, {'supercategory': 'furniture', 'id': 70, 'name': 
'toilet'}, {'supercategory': 'electronic', 'id': 72, 'name': 'tv'}, {'supercategory': 'electronic', 'id': 73, 'name': 'laptop'}, {'supercategory': 
'electronic', 'id': 74, 'name': 'mouse'}, {'supercategory': 'electronic', 'id': 75, 'name': 'remote'}, {'supercategory': 'electronic', 'id': 76, 'name': 'keyboard'}, 
{'supercategory': 'electronic', 'id': 77, 'name': 'cell phone'}, {'supercategory': 'appliance', 'id': 78, 'name': 'microwave'}, {'supercategory': 'appliance', 'id': 
79, 'name': 'oven'}, {'supercategory': 'appliance', 'id': 80, 'name': 'toaster'}, {'supercategory': 'appliance', 'id': 81, 'name': 'sink'}, {'supercategory': 
'appliance', 'id': 82, 'name': 'refrigerator'}, {'supercategory': 'indoor', 'id': 84, 'name': 'book'}, {'supercategory': 'indoor', 'id': 85, 'name': 'clock'}, 
{'supercategory': 'indoor', 'id': 86, 'name': 'vase'}, {'supercategory': 'indoor', 'id': 87, 'name': 'scissors'}, {'supercategory': 'indoor', 'id': 88, 'name': 'teddybear'}, {'supercategory': 'indoor', 'id': 89, 'name': 'hair drier'}, {'supercategory': 'indoor', 'id': 90, 'name': 'toothbrush'}]

结果打出来发现coco的标签有跳跃的现象:

38 coco_json: id 43 names tennis racket
39 names: bottle
39 coco_json: id 44 names bottle
40 names: wine glass
40 coco_json: id 46 names wine glass
41 names: cup
41 coco_json: id 47 names cup

可以再多创建一个映射,从网络预测输出到coco的category id的映射。

        # load json names idwith open(self.area_annotation_document) as f:print('loading:',self.area_annotation_document)instances_val = json.load(f)print('loading done.')coco_categories=instances_val['categories']# load names idwith open('sk_spectral_cluster/coco_names.pkl', 'rb') as f:print("loading coco_names.pkl")names = pickle.load(f)predict_id_to_json_id={}for idx in range(len(names)):# print(idx,'names:', names[idx])# print(idx,'coco_json:','id',coco_categories[idx]['id'],'names',coco_categories[idx]['name'])predict_id_to_json_id[idx]=coco_categories[idx]['id']

 

三、创建直方图以及写入

3.1 创建直方图

https://blog.csdn.net/xjl271314/article/details/80295935

打算先用plt.hist,再用plt.savefig函数

3.2 plt.hist

https://blog.csdn.net/denny2015/article/details/50581784

n, bins, patches = plt.hist(arr, bins=10, normed=0, facecolor='black', edgecolor='black',alpha=1,histtype='bar')

hist的参数非常多,但常用的就这六个,只有第一个是必须的,后面四个可选

  • arr: 需要计算直方图的一维数组
  • bins: 直方图的柱数,可选项,默认为10
  • normed: 是否将得到的直方图向量归一化。默认为0
  • facecolor: 直方图颜色
  • edgecolor: 直方图边框颜色
  • alpha: 透明度
  • histtype: 直方图类型,‘bar’, ‘barstacked’, ‘step’, ‘stepfilled’

返回值 :

  • n: 直方图向量,是否归一化由参数normed设定
  • bins: 返回各个bin的区间范围
  • patches: 返回每个bin里面包含的数据,是一个list

3.3 创建直方图

直接根据list创建直方图即可。

    def hist_try(self):area_list=[235939.0035, 64153.92420000001, 797.3219000000005, 40377.498349999994, 825.0993000000005, 122283.17504999999, 110586.77519999997, 23235.967249999994, 7660.271999999997, 2845.3616000000015, 5078.0296, 39.01750000000018, 13050.5062, 1644.8198499999994, 9904.229450000003, 2675.0394999999994, 201191.88094999996, 41419.92445, 1120.6729999999989, 27064.562149999998, 6759.543450000003, 1151.2815999999998, 5645.972500000001, 70239.99469999998, 2468.0781500000003, 74.00769999999972, 274.57424999999995, 4085.4411499999997, 54892.3609, 20344.5, 4100.955550000003, 306.8878499999999, 598.1379500000002, 98200.96145, 1548.7608999999993, 48371.46090000002, 93.5650500000001, 996.3833999999999, 5999.726849999999, 65061.527849999984, 1343.6522999999995, 2444.3842, 20702.087949999997, 41612.6938, 8716.784449999997, 35314.11059999999, 1057.09515, 679.1063999999998, 32340.461000000007, 107332.58170000001, 564.0283000000005, 308.6485500000002, 6411.314050000004, 16892.101950000004, 2804.765700000001, 4544.119050000003, 848.3638999999996, 22555.577249999988, 704.9074499999999, 2714.924900000001, 400.17665000000056, 3047.8062999999997, 672.6902500000001, 1154.583900000002, 159.42344999999992, 2678.627699999999, 53877.39709999998, 6252.4588, 13623.237050000003, 1205.1451499999996, 3420.360850000001, 64.22899999999954, 1196.9678999999999, 5284.887600000001, 21816.5393, 40446.13375, 1009.3892000000008, 758.1965500000001, 13942.263000000003, 26605.372250000004, 1544.6851499999987, 11569.050200000003, 27346.60955, 7509.192800000006, 7443.993800000002, 187.2916000000001, 430.38455000000033, 1731.0626999999993, 22365.95915, 6107.7645999999995, 4146.846700000001, 5192.632750000001, 177.79995000000005, 2192.3364500000007, 30382.73005, 5084.077300000002, 24334.4352, 13273.328150000001, 19199.403049999997, 258.82960000000026, 171.6086499999996, 2579.294149999999, 10643.136300000002, 5276.648400000001, 130754.4461, 25967.8492, 98401.47165, 5083.535600000001, 620.5996500000009, 200.7367, 109093.38190000002, 14135.86125, 3862.85095, 1893.2924500000001, 1645.1986999999992, 3865.672500000002, 967.6888999999992, 2119.0998500000005, 1230.5245000000007, 1788.7488000000008, 693.7150500000005, 1072.0571000000002, 8818.327500000001, 1024.2146999999995, 25633.0359, 23320.623299999996, 673.1012000000009, 2222.3002000000015, 61014.46195, 1798.2479000000003, 84.1216999999999, 12116.474599999998, 4210.0095999999985, 314.3817499999999, 447.9805499999999, 228.29715000000022, 857.4145500000011, 519.8693000000002, 1650.575849999999, 5387.092499999999, 3240.4637500000003, 277831.7656500001, 6361.4247, 221.1024500000001, 15152.461450000003, 74614.90974999998, 4723.702600000005, 1759.2794500000005, 7691.003450000003, 449.2458000000002, 4290.22515, 49.50310000000002, 2441.497700000003, 95.18614999999988, 4379.470049999998, 2092.353499999998, 331.8804999999998, 3466.876549999998, 661.835500000002, 120996.0934, 629.6973000000003, 10204.53555, 3189.4067999999993, 1626.1462500000007, 311.83700000000005, 6595.661949999999, 766.3864500000003, 5832.719049999997, 622.8069000000003, 7538.644450000001, 90435.91854999997, 691.8538499999994, 19856.873300000003, 535.360100000001, 626.5313499999994, 160407.01739999998, 1773.1797999999994, 23848.098950000003, 412.3286000000004, 9071.85025, 77140.08305, 28072.59055000001, 3928.6560000000018, 928.5198500000002, 150.85995000000014, 11993.837499999998, 1933.3202499999993, 10484.912499999999, 104.0705, 2030.9136499999997, 995.7477499999995, 12849.491750000001, 2338.2236, 87.6514499999999, 24800.063850000002, 25153.20225, 1055.6573000000005, 694.9957499999987, 17828.574000000004, 76.1506500000003, 2596.9522000000006, 21308.426099999993, 3866.2829500000007, 3592.980500000001, 125.80120000000004, 296.64504999999923, 147.27640000000002, 16730.887099999993, 894.561599999999, 9031.985350000003, 2691.973500000001, 266.99935000000016, 2960.777250000001, 6210.0092, 433.22290000000044, 59792.20055, 4647.302199999999, 4789.46715, 3166.24635, 982.3338500000001, 5318.79285, 1205.97105, 30287.507150000005, 2542.6319000000003, 18771.75479999999, 988.8504000000003, 12833.495099999998, 6200.59555, 362.6848000000004, 1644.2095499999996, 4357.1161, 1328.4182000000008, 4486.79725, 40020.7544, 97421.5079, 12820.688849999999, 2030.1669000000004, 2788.8766499999983, 6761.3549, 1066.2487, 24087.15335, 466.37290000000036, 16821.8598, 149.65445000000034, 1246.0752999999997, 2882.825749999999, 26858.9004, 528.0869999999999, 19324.892450000003, 15629.004099999998, 98778.0215, 519.7051000000002, 43175.931500000006, 515.3512000000003, 1439.2336, 7132.1326, 1231.4716000000012, 486.8542000000008, 1815.2694999999983, 12663.202550000007, 59650.16855, 4806.4469500000005, 4913.544050000002, 8088.978949999999, 495.26579999999933, 11617.636250000003, 4081.1772499999997, 160451.48539999995, 16713.16865, 18227.059300000008, 26672.41565000001, 1043.1385999999998, 425.01955000000004, 130230.89709999993, 628.2395999999999, 22252.702399999995, 484.91110000000015, 210.3083500000005, 26.957550000000033, 5888.0771, 2141.0891, 220863.50235000002, 5737.141799999999, 3993.392899999999, 1562.9962500000004, 49597.06825, 128177.13039999997, 28657.39415000001, 1132.2413499999998, 26731.31054999999, 1059.2594, 4745.592499999999, 1920.1159499999983, 127.58095000000012, 12190.44565, 555.7345500000004, 9237.729949999997, 46.56134999999999, 236.1499999999998, 4298.163950000001, 216726.06719999996, 62.61789999999998, 2463.3468, 58960.8349, 5199.69665, 9304.32905, 9313.074099999998, 255.92869999999982, 69.30369999999995, 6764.494600000001, 6947.59405, 9963.741200000004, 2287.71385, 109.46640000000002, 2293.3109999999997, 16593.583899999998, 24518.62785, 355.55969999999905, 20953.521099999998, 2855.7088999999996, 3858.7823000000003, 8844.460499999997]plt.hist(area_list, bins=256, normed=0, facecolor='black', edgecolor='black', alpha=1, histtype = 'bar')plt.savefig(self.histo_img_path)

3.4 plt图像存储

plt.hist(salary, group, histtype='bar', rwidth=0.8) 
plt.legend() 
plt.xlabel('salary-group') 
plt.ylabel('salary') 
plt.title(u'测试例子——直方图', FontProperties=font)

用相应的文件,进行输入与测试。

        if not os.path.isdir(self.histo_img_dir):os.makedirs(self.histo_img_dir)area_list=[235939.0035, 64153.92420000001, 797.3219000000005, 40377.498349999994, 825.0993000000005, 122283.17504999999, 110586.77519999997, 23235.967249999994, 7660.271999999997, 2845.3616000000015, 5078.0296, 39.01750000000018, 13050.5062, 1644.8198499999994, 9904.229450000003, 2675.0394999999994, 201191.88094999996, 41419.92445, 1120.6729999999989, 27064.562149999998, 6759.543450000003, 1151.2815999999998, 5645.972500000001, 70239.99469999998, 2468.0781500000003, 74.00769999999972, 274.57424999999995, 4085.4411499999997, 54892.3609, 20344.5, 4100.955550000003, 306.8878499999999, 598.1379500000002, 98200.96145, 1548.7608999999993, 48371.46090000002, 93.5650500000001, 996.3833999999999, 5999.726849999999, 65061.527849999984, 1343.6522999999995, 2444.3842, 20702.087949999997, 41612.6938, 8716.784449999997, 35314.11059999999, 1057.09515, 679.1063999999998, 32340.461000000007, 107332.58170000001, 564.0283000000005, 308.6485500000002, 6411.314050000004, 16892.101950000004, 2804.765700000001, 4544.119050000003, 848.3638999999996, 22555.577249999988, 704.9074499999999, 2714.924900000001, 400.17665000000056, 3047.8062999999997, 672.6902500000001, 1154.583900000002, 159.42344999999992, 2678.627699999999, 53877.39709999998, 6252.4588, 13623.237050000003, 1205.1451499999996, 3420.360850000001, 64.22899999999954, 1196.9678999999999, 5284.887600000001, 21816.5393, 40446.13375, 1009.3892000000008, 758.1965500000001, 13942.263000000003, 26605.372250000004, 1544.6851499999987, 11569.050200000003, 27346.60955, 7509.192800000006, 7443.993800000002, 187.2916000000001, 430.38455000000033, 1731.0626999999993, 22365.95915, 6107.7645999999995, 4146.846700000001, 5192.632750000001, 177.79995000000005, 2192.3364500000007, 30382.73005, 5084.077300000002, 24334.4352, 13273.328150000001, 19199.403049999997, 258.82960000000026, 171.6086499999996, 2579.294149999999, 10643.136300000002, 5276.648400000001, 130754.4461, 25967.8492, 98401.47165, 5083.535600000001, 620.5996500000009, 200.7367, 109093.38190000002, 14135.86125, 3862.85095, 1893.2924500000001, 1645.1986999999992, 3865.672500000002, 967.6888999999992, 2119.0998500000005, 1230.5245000000007, 1788.7488000000008, 693.7150500000005, 1072.0571000000002, 8818.327500000001, 1024.2146999999995, 25633.0359, 23320.623299999996, 673.1012000000009, 2222.3002000000015, 61014.46195, 1798.2479000000003, 84.1216999999999, 12116.474599999998, 4210.0095999999985, 314.3817499999999, 447.9805499999999, 228.29715000000022, 857.4145500000011, 519.8693000000002, 1650.575849999999, 5387.092499999999, 3240.4637500000003, 277831.7656500001, 6361.4247, 221.1024500000001, 15152.461450000003, 74614.90974999998, 4723.702600000005, 1759.2794500000005, 7691.003450000003, 449.2458000000002, 4290.22515, 49.50310000000002, 2441.497700000003, 95.18614999999988, 4379.470049999998, 2092.353499999998, 331.8804999999998, 3466.876549999998, 661.835500000002, 120996.0934, 629.6973000000003, 10204.53555, 3189.4067999999993, 1626.1462500000007, 311.83700000000005, 6595.661949999999, 766.3864500000003, 5832.719049999997, 622.8069000000003, 7538.644450000001, 90435.91854999997, 691.8538499999994, 19856.873300000003, 535.360100000001, 626.5313499999994, 160407.01739999998, 1773.1797999999994, 23848.098950000003, 412.3286000000004, 9071.85025, 77140.08305, 28072.59055000001, 3928.6560000000018, 928.5198500000002, 150.85995000000014, 11993.837499999998, 1933.3202499999993, 10484.912499999999, 104.0705, 2030.9136499999997, 995.7477499999995, 12849.491750000001, 2338.2236, 87.6514499999999, 24800.063850000002, 25153.20225, 1055.6573000000005, 694.9957499999987, 17828.574000000004, 76.1506500000003, 2596.9522000000006, 21308.426099999993, 3866.2829500000007, 3592.980500000001, 125.80120000000004, 296.64504999999923, 147.27640000000002, 16730.887099999993, 894.561599999999, 9031.985350000003, 2691.973500000001, 266.99935000000016, 2960.777250000001, 6210.0092, 433.22290000000044, 59792.20055, 4647.302199999999, 4789.46715, 3166.24635, 982.3338500000001, 5318.79285, 1205.97105, 30287.507150000005, 2542.6319000000003, 18771.75479999999, 988.8504000000003, 12833.495099999998, 6200.59555, 362.6848000000004, 1644.2095499999996, 4357.1161, 1328.4182000000008, 4486.79725, 40020.7544, 97421.5079, 12820.688849999999, 2030.1669000000004, 2788.8766499999983, 6761.3549, 1066.2487, 24087.15335, 466.37290000000036, 16821.8598, 149.65445000000034, 1246.0752999999997, 2882.825749999999, 26858.9004, 528.0869999999999, 19324.892450000003, 15629.004099999998, 98778.0215, 519.7051000000002, 43175.931500000006, 515.3512000000003, 1439.2336, 7132.1326, 1231.4716000000012, 486.8542000000008, 1815.2694999999983, 12663.202550000007, 59650.16855, 4806.4469500000005, 4913.544050000002, 8088.978949999999, 495.26579999999933, 11617.636250000003, 4081.1772499999997, 160451.48539999995, 16713.16865, 18227.059300000008, 26672.41565000001, 1043.1385999999998, 425.01955000000004, 130230.89709999993, 628.2395999999999, 22252.702399999995, 484.91110000000015, 210.3083500000005, 26.957550000000033, 5888.0771, 2141.0891, 220863.50235000002, 5737.141799999999, 3993.392899999999, 1562.9962500000004, 49597.06825, 128177.13039999997, 28657.39415000001, 1132.2413499999998, 26731.31054999999, 1059.2594, 4745.592499999999, 1920.1159499999983, 127.58095000000012, 12190.44565, 555.7345500000004, 9237.729949999997, 46.56134999999999, 236.1499999999998, 4298.163950000001, 216726.06719999996, 62.61789999999998, 2463.3468, 58960.8349, 5199.69665, 9304.32905, 9313.074099999998, 255.92869999999982, 69.30369999999995, 6764.494600000001, 6947.59405, 9963.741200000004, 2287.71385, 109.46640000000002, 2293.3109999999997, 16593.583899999998, 24518.62785, 355.55969999999905, 20953.521099999998, 2855.7088999999996, 3858.7823000000003, 8844.460499999997]plt.hist(area_list, bins=512, normed=0, facecolor='black', edgecolor='black', alpha=1, histtype = 'bar')plt.legend()plt.xlabel('badcase size')plt.ylabel('badcase numbers')plt.title('class '+str(1)+'badcase histogram')img_name=self.histo_img_dir+'class1.jpg'plt.savefig(img_name)plt.hist(area_list, bins=10, normed=0, facecolor='black', edgecolor='black', alpha=1, histtype = 'bar')plt.legend()plt.xlabel('badcase size')plt.ylabel('badcase numbers')plt.title('class '+str(2)+'badcase histogram')img_name=self.histo_img_dir+'class2.jpg'plt.savefig(img_name)

 存储之后,务必记得删掉相应的plt.close('all'),不然生成的直方图非常类似。

3.4 直方图的值

可以print出一些大致查看一下。

[683.9160000000005, 2442.46605, 14484.758699999993, 3386.5678499999995, 14479.344549999996, 13515.022249999998, 7965.106, 5678.810250000002, 2327.091099999999, 13631.614450000001, 2796.608800000001, 34886.04705, 325.50250000000017, 34519.20375, 1698.1252500000007, 48642.866050000026, 
71689.66249999999, 1773.4906499999995, 492.9880500000001, 109111.37125000001, 1019.5727999999996, 1242.2530000000004, 4899.727649999999, 8881.890700000002, 930.5868999999998, 848.3562, 2310.67225, 603.83655, 1731.6071000000013, 24791.8876, 1082.5951500000006, 6472.634000000001, 94612.16660000001, 691.79215, 4489.496849999999, 5564.19405, 1092.7272499999997, 22771.6285, 1747.8156000000008, 1473.8869999999995, 11573.610550000003, 5180.9365, 72986.89145000002, 210.46294999999998, 3841.575599999999, 497.43615000000017, 5046.022349999997, 1744.5338500000003, 1092.3092000000001, 1286.9624500000007, 434.8083500000001, 
8087.406949999999, 1670.8321500000004, 4459.141700000001, 1989.5381500000003, 592.2093, 846.8612499999999, 389.14055000000036, 30712.36465000001, 14510.547649999999, 87553.47919999997, 16214.509000000002, 52923.730299999996, 34677.3077, 32366.462899999988, 602.9749500000005, 241.78099999999992, 
1190.1633999999995, 2205.7668000000003, 1239.5366, 1396.8755, 9500.852600000002, 20389.856850000004, 3651.285800000002, 95486.64685000003, 6979.759900000002, 8463.49585, 28137.6279, 12057.38095, 8713.739650000001, 6117.859549999999, 11247.828699999998, 4633.14075, 2064.767450000002, 964.5043000000002, 613.1057, 
1979.5362500000003, 2753.947499999998, 20320.293299999983, 3211.1752999999985, 1601.1844000000003, 55942.1499, 16455.539300000004, 23301.4676, 1834.5064000000004, 4534.887249999999, 1219.8842499999998, 1868.28045, 1552.0870000000004, 5627.17175, 
10954.283500000005, 91.5470000000001, 1237.39605, 2055.6168, 2427.7046000000005, 2742.52815, 7729.81905, 61379.4444, 2242.7182000000007, 776.7938500000002, 25998.50349999999, 11309.197699999997, 19003.994399999996, 500.52919999999864, 
553.5479500000002, 337.13875000000047, 3546.14375, 834.4200999999995, 2907.019050000001, 4721.70215, 24307.453050000004, 30627.230450000003, 64338.71099999998, 68099.72225000002, 1321.9788999999992, 4787.533700000001, 21151.617250000007, 9178.8901, 4339.022200000003, 2396.86255, 802.7199499999999,16676.49185, 1824.0607499999999, 1507.88895, 587.7183999999996, 2571.5704, 2102.1658500000003, 12234.506650000001, 772.6651500000014, 4435.3801, 5508.0989000000045, 3142.5754, 1811.7970500000013, 3051.871, 3727.1215999999986, 18412.6569, 499.1101, 19067.370849999992, 12836.944349999998, 5653.223150000002, 2481.26605, 1582.50975, 2423.39585, 15213.736899999994, 28413.067950000004, 
576.3890499999994, 201.07575000000003, 11694.643699999997, 11040.114499999998, 543.3011500000001, 44412.159199999995, 544.8582000000001, 673.0482999999999, 14934.810599999999, 4994.224450000001, 516.8612000000005, 7971.805999999999, 61756.51254999999, 522.83385, 451.03904999999986, 7023.577050000001, 
7265.986849999999, 61958.96604999999, 5680.64175, 9141.920350000002, 15217.30065, 602.6508999999999, 50731.444700000015, 3063.1288500000023, 41144.99094999999, 20797.686599999997, 867.4010000000002, 26819.547, 796.9999499999998, 10562.143299999998, 3913.147049999999]
[1724.1692499999997, 366.15034999999966, 15802.880550000003, 1225.0612, 5476.302099999996, 610.3301500000001, 429.36165000000045, 733.2061000000003, 1944.4293500000003, 22528.827299999997, 2047.4176500000003, 4414.537699999999, 47382.45214999999, 2869.1595500000008, 43092.030199999994, 1618.52535, 367.96160000000003, 5022.433500000001, 1605.3408, 346.34710000000075, 5044.8439499999995, 1321.19305, 3159.83075, 2618.5579500000026, 8377.59445, 10347.806049999994, 38315.6847, 833.8229499999998, 620.6976499999996, 
6355.030249999999, 302.02639999999985, 1520.7268499999996, 1060.9626, 8535.399400000002, 990.3860999999995, 14585.555250000005, 181.53479999999993, 2383.0066000000006, 439.6647499999999, 170.79249999999968, 54813.32545, 1833.8056500000005, 5240.37735, 5066.245699999999, 42476.40844999998, 1260.8629999999998, 336.687600000001, 1609.8348999999998, 2977.436950000002, 1205.3774499999984, 693.5048000000007, 8646.50815, 482.7517999999998, 
1578.913200000001]
[351.598449999999, 455.98845000000006, 126.78010000000019, 514.8395000000003, 406.4549999999999, 7550.0779, 84.9699000000001, 9.678950000000109, 35.56769999999989, 39.973200000000126, 394.5030499999988, 100.25860000000007, 37.878299999999896, 33.97390000000004, 248.32479999999987, 513.4488999999992, 139.4486499999998, 311.90315000000027, 428.46459999999956, 869.41345, 
243.80120000000008, 110.08284999999972, 1920.022200000001, 1054.8499499999994, 15162.020400000001, 185.6614999999997, 63.12685000000007, 224.28239999999988, 345.07704999999976, 257.955849999999, 3818.948149999999, 38.15974999999986, 2438.069849999999, 247.61110000000124, 4717.834649999999, 2854.0712999999982, 13423.968249999994, 703.90825, 32.716900000000166, 322.78010000000023, 188.23489999999902, 776.5165999999997, 706.7350999999991, 174.32570000000058, 169.27564999999984, 421.2784000000006, 40.16000000000007, 171.9341000000002, 4082.148650000001, 49.973049999999944, 2478.508799999998, 12.463999999999809, 29.90400000000009, 32.42195000000007, 2013.7202000000023, 1111.2301499999999, 951.9321500000003, 5501.7800000000025, 19054.2669, 1063.02525, 1231.7002999999972, 108.1362, 2642.0498000000016, 362.2731, 14.572200000000047, 411.22345, 150.87795000000008, 94.12419999999995, 2965.7859999999982, 99.06964999999985, 1374.7440999999978, 447.42525000000023, 73.95509999999983, 17757.11055, 13.371199999999863, 26045.760599999998, 75.52944999999983, 319.91989999999953, 690.5670500000001, 651.0274999999993, 571.9453500000006, 19.095449999999886, 
430.0609000000003, 472.3264499999994, 14.139350000000046, 3329.5093500000003, 8418.920500000004, 156.1894499999998, 4515.5091, 203.52659999999946, 182.8668000000001, 8054.924750000002, 62.799449999999986, 40.03914999999982, 15.188800000000015, 130.68259999999958, 343.4634499999999, 46.27455000000004, 180.10404999999986, 14429.936999999994, 19.00760000000006, 1212.6895999999997, 1272.8396999999989, 10439.520400000009, 4912.1141, 1462.5064, 83.44374999999991, 234.65625000000037, 54.64059999999992, 2391.116800000001, 116.79520000000005, 77.21045000000025, 1516.4389499999997, 73.30219999999991, 89.63220000000037, 136.05375000000046, 32780.061699999984, 106.98255000000017, 1452.5062499999997, 103.90935000000012, 319.4284000000001, 16.047649999999976, 6393.757299999998]

四、图片URL

4.1 标注的格式

标注之中,图片的名称的格式:

{"info": {"description": "COCO 2014 Dataset","url": "http://cocodataset.org","version": "1.0","year": 2014,"contributor": "COCO Consortium","date_created": "2017/
09/01"},"images": [{"license": 3,"file_name": "COCO_val2014_000000391895.jpg","coco_url": "http://images.cocodataset.org/val2014/COCO_val2014_000000391895.jpg","h
eight": 360,"width": 640,"date_captured": "2013-11-14 11:18:45","flickr_url": "http://farm9.staticflickr.com/8186/8119368305_4e622c8349_z.jpg","id": 391895},{"lic
ense": 4,"file_name": "COCO_val2014_000000522418.jpg","coco_url": "http://images.cocodataset.org/val2014/COCO_val2014_000000522418.jpg","height": 480,"width": 640
,"date_captured": "2013-11-14 11:38:44","flickr_url": "http://farm1.staticflickr.com/1/127244861_ab0c0381e7_z.jpg","id": 522418},{"license": 3,"file_name": "COCO_
val2014_000000184613.jpg","coco_url": "http://images.cocodataset.org/val2014/COCO_val2014_000000184613.jpg","height": 336,"width": 500,"date_captured": "2013-11-1
4 12:36:29","flickr_url": "http://farm3.staticflickr.com/2169/2118578392_1193aa04a0_z.jpg","id": 184613},{"license": 3,"file_name": "COCO_val2014_000000318219.jpg
","coco_url": "http://images.cocodataset.org/val2014/COCO_val2014_000000318219.jpg","height": 640,"width": 556,"date_captured": "2013-11-14 13:02:53","flickr_url"
: "http://farm5.staticflickr.com/4125/5094763076_813ea2751b_z.jpg","id": 318219},{"license": 3,"file_name": "COCO_val2014_000000554625.jpg","coco_url": "http://im
ages.cocodataset.org/val2014/COCO_val2014_000000554625.jpg","height": 640,"width": 426,"date_captured": "2013-11-14 16:03:19","flickr_url": "http://farm5.staticfl
ickr.com/4086/5094162993_8f59d8a473_z.jpg","id": 554625},{"license": 4,"file_name": "COCO_val2014_000000397133.jpg","coco_url": "http://images.cocodataset.org/val
2014/COCO_val2014_000000397133.jpg","height": 427,"width": 640,"date_captured": "2013-11-14 17:02:52","flickr_url": "http://farm7.staticflickr.com/6116/6255196340
_da26cf2c9e_z.jpg","id": 397133},{"license": 3,"file_name": "COCO_val2014_000000574769.jpg","coco_url": "http://images.cocodataset.org/val2014/COCO_val2014_000000
574769.jpg","height": 640,"width": 480,"date_captured": "2013-11-14 17:07:59","flickr_url": "http://farm8.staticflickr.com/7010/6728227647_3d5a0d55ee_z.jpg","id":574769},{"license": 4,"file_name": "COCO_val2014_000000060623.jpg","coco_url": "http://images.cocodataset.org/val2014/COCO_val2014_000000060623.jpg","height": 42
7,"width": 640,"date_captured": "2013-11-14 17:24:15","flickr_url": "http://farm7.staticflickr.com/6080/6113512699_37b4c98473_z.jpg","id": 60623},{"license": 2,"f
ile_name": "COCO_val2014_000000309022.jpg","coco_url": "http://images.cocodataset.org/val2014/COCO_val2014_000000309022.jpg","height": 480,"width": 640,"date_capt
ured": "2013-11-14 17:28:23","flickr_url": "http://farm4.staticflickr.com/3790/10167396295_e63f2856d0_z.jpg","id": 309022},{"license": 2,"file_name": "COCO_val201
4_000000005802.jpg","coco_url": "http://images.cocodataset.org/val2014/COCO_val2014_000000005802.jpg","height": 479,"width": 640,"date_captured": "2013-11-14 17:2
8:25","flickr_url": "http://farm4.staticflickr.com/3810/9614287841_1b724dbbc5_z.jpg","id": 5802},{"license": 2,"file_name": "COCO_val2014_000000222564.jpg","coco_
url": "http://images.cocodataset.org/val2014/COCO_val2014_000000222564.jpg","height": 480,"width": 640,"date_captured": "2013-11-14 17:30:34","flickr_url": "http:
//farm8.staticflickr.com/7390/10166966765_c96225b556_z.jpg","id": 222564},{"license": 1,"file_name": "COCO_val2014_000000118113.jpg","coco_url": "http://images.co
codataset.org/val2014/COCO_val2014_000000118113.jpg","height": 640,"width": 480,"date_captured": "2013-11-14 17:44:50","flickr_url": "http://farm8.staticflickr.co
m/7030/6555665525_b242809dc2_z.jpg","id": 118113},

4.2 添加输出badcase的URL

coco_url,之前查找img_ID的后面增加查找URL的语句。

        # loading json annotationwith open(self.area_annotation_document) as f:print('loading:', self.area_annotation_document)instances_val = json.load(f)print('loading done.')annotations_list = instances_val['annotations']images_list = instances_val['images']coco_categories = instances_val['categories']# from predict idx to json category id listpredict_idx_to_json_id = {}for idx in range(len(names)):predict_idx_to_json_id[idx] = coco_categories[idx]['id']# from image name find image iddef from_image_name_find_id_and_URL(file_name, images_list):for image_idx in range(len(images_list)):# if (image_idx%10000==0):#     print('from image_name find id:',image_idx,'/',len(images_list))if file_name == images_list[image_idx]['file_name']:img_id = images_list[image_idx]['id']coco_url=images_list[image_idx]['coco_url']breakreturn img_id,coco_url

4.3 ULR的存储

存入dict之中,

        # generate label true predict negative area list dictltrue_pnegative_catagory_area_dict={}coco_badcase_img_url_dict={}for category_idx in range(self.class_num):ltrue_pnegative_catagory_area_dict[category_idx] = []coco_badcase_img_url_dict[category_idx]=[]for idx in range(len(self.ture_negative_name_dict[category_idx])):if idx%300==0:print('category:',category_idx,'finding area:',idx,'/',len(self.ture_negative_name_dict[category_idx]))img_id,coco_url=from_image_name_find_id_and_URL(file_name=self.ture_negative_name_dict[category_idx][idx], images_list=images_list)ltrue_pnegative_catagory_area_dict[category_idx].append(from_id_and_class_find_area(img_id=img_id, class_id=category_idx, annotations_list=annotations_list))coco_badcase_img_url_dict[category_idx].append(coco_url)# save coco_url into dict and pklif not os.path.exists(self.badcase_coco_url_path):with open(self.badcase_coco_url_path, 'wb') as f:print('writing to', self.badcase_coco_url_path)pickle.dump(coco_badcase_img_url_dict, f)

4.4 本地print

生成数组随机读出相应的图片

生成一个随机数

https://www.runoob.com/python3/python3-random-number.html

random.randint(a,b) 生成a,b之间的一个随机整数

序列乱序

>>> import random
>>> a=[1,2,3,4,5]
>>> a
[1, 2, 3, 4, 5]
>>> random.shuffle(a)
>>> a
[5, 4, 2, 1, 3]

生成1到n的列表

b=list(range(100))
>>> b
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 
85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99]
"""
created by xingxiangrui on 2019.5.23
this program is to :read badcase coco url and print some of them
"""
import torch.utils.data as data
import json
import os
import subprocess
from PIL import Image
import numpy as np
import torch
import pickle
from util import *
import pandas as pd
import matplotlib.pyplot as plt
import warnings
import randomclass coco_url_print():def __init__(self):# super(self).__init__()warnings.simplefilter("ignore")self.read_and_write_dir='/Users/Desktop/code/chun_ML_GCN/badcase_analyse/cls_gat_hist/'self.url_pkl_file_name='badcase_coco_url.pkl'self.url_pkl_file_path=self.read_and_write_dir+self.url_pkl_file_nameself.output_category=24self.output_num=3# load and print coco urldef run_coco_url_print(self):# loadint fileswith open(self.url_pkl_file_path,'rb') as f:print('loading ',self.url_pkl_file_path)coco_url_dict=pickle.load(f)random_idx=list(range(len(coco_url_dict[self.output_category])))random.shuffle(random_idx)print('category:', self.output_category,'output num:',self.output_num)for output_idx in range(self.output_num):print(coco_url_dict[self.output_category][random_idx[output_idx]])print('program end...')if __name__ == '__main__':coco_url_print().run_coco_url_print()

这篇关于COCO数据集标注框的读取及badcase analyse的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/269214

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者