COCO数据集标注框的读取及badcase analyse

2023-10-23 16:59

本文主要是介绍COCO数据集标注框的读取及badcase analyse,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目的:查看badcase的错误的时候的框大小值。

本地调试程序至关重要,不然每次都要用服务器print,非常耗时耗力。

macOS上PyCharm本地配置Anaconda环境

博主代码地址:https://github.com/Xingxiangrui/multi_label_badcase_analyse/blob/master/badcase_analyse.py

目录

一、coco的标签

1.1 coco标注的类型

1.2 每种json内部

1.3 Object Instance

二、标签的加载

2.1 标签的加载

2.2 coco类别标签

三、创建直方图以及写入

3.1 创建直方图

3.2 plt.hist

3.3 创建直方图

3.4 plt图像存储

3.4 直方图的值

四、图片URL

4.1 标注的格式

4.2 添加输出badcase的URL

4.3 ULR的存储

4.4 本地print


一、coco的标签

1.1 coco标注的类型

COCO通过大量使用Amazon Mechanical Turk来收集数据。COCO数据集现在有3种标注类型:object instances(目标实例), object keypoints(目标上的关键点), 和image captions(看图说话),使用JSON文件存储。

$ ls
captions_train2014.json  instances_train2014.json  person_keypoints_train2014.json
captions_val2014.json    instances_val2014.json    person_keypoints_val2014.json

1.2 每种json内部

三种文件共享object instances(目标实例)、object keypoints(目标上的关键点)、image captions(看图说话)这3种类型共享这些基本类型:info、image、license

{"info": info,"licenses": [license],"images": [image],"annotations": [annotation],
}info{"year": int,"version": str,"description": str,"contributor": str,"url": str,"date_created": datetime,
}
license{"id": int,"name": str,"url": str,
} 
image{"id": int,"width": int,"height": int,"file_name": str,"license": int,"flickr_url": str,"coco_url": str,"date_captured": datetime,
}

1.3 Object Instance

目标实例,这里面有相应的bbox信息,

分为下面这些段落

{"info": info,"licenses": [license],"images": [image],"annotations": [annotation],"categories": [category]
}

其中的annotations为:

annotation{"id": int,    "image_id": int,"category_id": int,"segmentation": RLE or [polygon],"area": float,"bbox": [x,y,width,height],"iscrowd": 0 or 1,
}

包括了bbox,即标注框的坐标,以及area,标注区域的面积。

二、标签的加载

https://blog.csdn.net/banjuanshu/article/details/78370225

2.1 标签的加载

加载之后,会像dict一样。

        with open(self.area_annotation_document) as f:print('loading:',self.area_annotation_document)instances_val = json.load(f)print('loading done.')

其中annotations是对图片中物体标注的数据集,categories是所有物体的分类集,images是原始图片的信息

2.2 coco类别标签

category id

正常网络预测是80类,编写程序print出相应的预测。

    def coco_categories_names(self):# load json names idwith open(self.area_annotation_document) as f:print('loading:',self.area_annotation_document)instances_val = json.load(f)print('loading done.')coco_categories=instances_val['categories']# load names idwith open('sk_spectral_cluster/coco_names.pkl', 'rb') as f:print("loading coco_names.pkl")names = pickle.load(f)print('names',names)print('coco json categories id',coco_categories)

 网络预测结果对应的names

names ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 
'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 
'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 
'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 
'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball 
glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 
'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 
'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote','keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']

coco labels,与前面的names顺序一致,但是id一共有90类。

coco json categories id [{'supercategory': 'person', 'id': 1, 'name': 'person'}, {'supercategory': 'vehicle', 'id': 2, 'name': 'bicycle'}, {'supercategory': 
'vehicle', 'id': 3, 'name': 'car'}, {'supercategory': 'vehicle', 'id': 4, 'name': 'motorcycle'}, {'supercategory': 'vehicle', 'id': 5, 'name': 'airplane'}, 
{'supercategory': 'vehicle', 'id': 6, 'name': 'bus'}, {'supercategory': 'vehicle', 'id': 7, 'name': 'train'}, {'supercategory': 'vehicle', 'id': 8, 'name': 'truck'}, 
{'supercategory': 'vehicle', 'id': 9, 'name': 'boat'}, {'supercategory': 'outdoor', 'id': 10, 'name': 'traffic light'}, {'supercategory': 'outdoor', 'id': 11, 'name': 
'fire hydrant'}, {'supercategory': 'outdoor', 'id': 13, 'name': 'stop sign'}, {'supercategory': 'outdoor', 'id': 14, 'name': 'parking meter'}, {'supercategory': 
'outdoor', 'id': 15, 'name': 'bench'}, {'supercategory': 'animal', 'id': 16, 'name': 'bird'}, {'supercategory': 'animal', 'id': 17, 'name': 'cat'}, 
{'supercategory': 'animal', 'id': 18, 'name': 'dog'}, {'supercategory': 'animal', 'id': 19, 'name': 'horse'}, {'supercategory': 'animal', 'id': 20, 'name': 'sheep'},{'supercategory': 'animal', 'id': 21, 'name': 'cow'}, {'supercategory': 'animal', 'id': 22, 'name': 'elephant'}, {'supercategory': 'animal', 'id': 23, 'name': 
'bear'}, {'supercategory': 'animal', 'id': 24, 'name': 'zebra'}, {'supercategory': 'animal', 'id': 25, 'name': 'giraffe'}, {'supercategory': 'accessory', 'id': 27, 
'name': 'backpack'}, {'supercategory': 'accessory', 'id': 28, 'name': 'umbrella'}, {'supercategory': 'accessory', 'id': 31, 'name': 'handbag'}, {'supercategory': 
'accessory', 'id': 32, 'name': 'tie'}, {'supercategory': 'accessory', 'id': 33, 'name': 'suitcase'}, {'supercategory': 'sports', 'id': 34, 'name': 'frisbee'}, 
{'supercategory': 'sports', 'id': 35, 'name': 'skis'}, {'supercategory': 'sports', 'id': 36, 'name': 'snowboard'}, {'supercategory': 'sports', 'id': 37, 'name': 
'sports ball'}, {'supercategory': 'sports', 'id': 38, 'name': 'kite'}, {'supercategory': 'sports', 'id': 39, 'name': 'baseball bat'}, {'supercategory': 
'sports', 'id': 40, 'name': 'baseball glove'}, {'supercategory': 'sports', 'id': 41, 'name': 'skateboard'}, {'supercategory': 'sports', 'id': 42, 'name': 
'surfboard'}, {'supercategory': 'sports', 'id': 43, 'name': 'tennis racket'}, {'supercategory': 'kitchen', 'id': 44, 'name': 'bottle'}, {'supercategory': 
'kitchen', 'id': 46, 'name': 'wine glass'}, {'supercategory': 'kitchen', 'id': 47, 'name': 'cup'}, {'supercategory': 'kitchen', 'id': 48, 'name': 'fork'}, 
{'supercategory': 'kitchen', 'id': 49, 'name': 'knife'}, {'supercategory': 'kitchen', 'id': 50, 'name': 'spoon'}, {'supercategory': 'kitchen', 'id': 51, 
'name': 'bowl'}, {'supercategory': 'food', 'id': 52, 'name': 'banana'}, {'supercategory': 'food', 'id': 53, 'name': 'apple'}, {'supercategory': 'food', 
'id': 54, 'name': 'sandwich'}, {'supercategory': 'food', 'id': 55, 'name': 'orange'}, {'supercategory': 'food', 'id': 56, 'name': 'broccoli'}, 
{'supercategory': 'food', 'id': 57, 'name': 'carrot'}, {'supercategory': 'food', 'id': 58, 'name': 'hot dog'}, {'supercategory': 'food', 'id': 59, 'name': 'pizza'},{'supercategory': 'food', 'id': 60, 'name': 'donut'}, {'supercategory': 'food', 'id': 61, 'name': 'cake'}, {'supercategory': 'furniture', 'id': 62, 'name': 
'chair'}, {'supercategory': 'furniture', 'id': 63, 'name': 'couch'}, {'supercategory': 'furniture', 'id': 64, 'name': 'potted plant'}, {'supercategory':'furniture', 'id': 65, 'name': 'bed'}, {'supercategory': 'furniture', 'id': 67, 'name': 'dining table'}, {'supercategory': 'furniture', 'id': 70, 'name': 
'toilet'}, {'supercategory': 'electronic', 'id': 72, 'name': 'tv'}, {'supercategory': 'electronic', 'id': 73, 'name': 'laptop'}, {'supercategory': 
'electronic', 'id': 74, 'name': 'mouse'}, {'supercategory': 'electronic', 'id': 75, 'name': 'remote'}, {'supercategory': 'electronic', 'id': 76, 'name': 'keyboard'}, 
{'supercategory': 'electronic', 'id': 77, 'name': 'cell phone'}, {'supercategory': 'appliance', 'id': 78, 'name': 'microwave'}, {'supercategory': 'appliance', 'id': 
79, 'name': 'oven'}, {'supercategory': 'appliance', 'id': 80, 'name': 'toaster'}, {'supercategory': 'appliance', 'id': 81, 'name': 'sink'}, {'supercategory': 
'appliance', 'id': 82, 'name': 'refrigerator'}, {'supercategory': 'indoor', 'id': 84, 'name': 'book'}, {'supercategory': 'indoor', 'id': 85, 'name': 'clock'}, 
{'supercategory': 'indoor', 'id': 86, 'name': 'vase'}, {'supercategory': 'indoor', 'id': 87, 'name': 'scissors'}, {'supercategory': 'indoor', 'id': 88, 'name': 'teddybear'}, {'supercategory': 'indoor', 'id': 89, 'name': 'hair drier'}, {'supercategory': 'indoor', 'id': 90, 'name': 'toothbrush'}]

结果打出来发现coco的标签有跳跃的现象:

38 coco_json: id 43 names tennis racket
39 names: bottle
39 coco_json: id 44 names bottle
40 names: wine glass
40 coco_json: id 46 names wine glass
41 names: cup
41 coco_json: id 47 names cup

可以再多创建一个映射,从网络预测输出到coco的category id的映射。

        # load json names idwith open(self.area_annotation_document) as f:print('loading:',self.area_annotation_document)instances_val = json.load(f)print('loading done.')coco_categories=instances_val['categories']# load names idwith open('sk_spectral_cluster/coco_names.pkl', 'rb') as f:print("loading coco_names.pkl")names = pickle.load(f)predict_id_to_json_id={}for idx in range(len(names)):# print(idx,'names:', names[idx])# print(idx,'coco_json:','id',coco_categories[idx]['id'],'names',coco_categories[idx]['name'])predict_id_to_json_id[idx]=coco_categories[idx]['id']

 

三、创建直方图以及写入

3.1 创建直方图

https://blog.csdn.net/xjl271314/article/details/80295935

打算先用plt.hist,再用plt.savefig函数

3.2 plt.hist

https://blog.csdn.net/denny2015/article/details/50581784

n, bins, patches = plt.hist(arr, bins=10, normed=0, facecolor='black', edgecolor='black',alpha=1,histtype='bar')

hist的参数非常多,但常用的就这六个,只有第一个是必须的,后面四个可选

  • arr: 需要计算直方图的一维数组
  • bins: 直方图的柱数,可选项,默认为10
  • normed: 是否将得到的直方图向量归一化。默认为0
  • facecolor: 直方图颜色
  • edgecolor: 直方图边框颜色
  • alpha: 透明度
  • histtype: 直方图类型,‘bar’, ‘barstacked’, ‘step’, ‘stepfilled’

返回值 :

  • n: 直方图向量,是否归一化由参数normed设定
  • bins: 返回各个bin的区间范围
  • patches: 返回每个bin里面包含的数据,是一个list

3.3 创建直方图

直接根据list创建直方图即可。

    def hist_try(self):area_list=[235939.0035, 64153.92420000001, 797.3219000000005, 40377.498349999994, 825.0993000000005, 122283.17504999999, 110586.77519999997, 23235.967249999994, 7660.271999999997, 2845.3616000000015, 5078.0296, 39.01750000000018, 13050.5062, 1644.8198499999994, 9904.229450000003, 2675.0394999999994, 201191.88094999996, 41419.92445, 1120.6729999999989, 27064.562149999998, 6759.543450000003, 1151.2815999999998, 5645.972500000001, 70239.99469999998, 2468.0781500000003, 74.00769999999972, 274.57424999999995, 4085.4411499999997, 54892.3609, 20344.5, 4100.955550000003, 306.8878499999999, 598.1379500000002, 98200.96145, 1548.7608999999993, 48371.46090000002, 93.5650500000001, 996.3833999999999, 5999.726849999999, 65061.527849999984, 1343.6522999999995, 2444.3842, 20702.087949999997, 41612.6938, 8716.784449999997, 35314.11059999999, 1057.09515, 679.1063999999998, 32340.461000000007, 107332.58170000001, 564.0283000000005, 308.6485500000002, 6411.314050000004, 16892.101950000004, 2804.765700000001, 4544.119050000003, 848.3638999999996, 22555.577249999988, 704.9074499999999, 2714.924900000001, 400.17665000000056, 3047.8062999999997, 672.6902500000001, 1154.583900000002, 159.42344999999992, 2678.627699999999, 53877.39709999998, 6252.4588, 13623.237050000003, 1205.1451499999996, 3420.360850000001, 64.22899999999954, 1196.9678999999999, 5284.887600000001, 21816.5393, 40446.13375, 1009.3892000000008, 758.1965500000001, 13942.263000000003, 26605.372250000004, 1544.6851499999987, 11569.050200000003, 27346.60955, 7509.192800000006, 7443.993800000002, 187.2916000000001, 430.38455000000033, 1731.0626999999993, 22365.95915, 6107.7645999999995, 4146.846700000001, 5192.632750000001, 177.79995000000005, 2192.3364500000007, 30382.73005, 5084.077300000002, 24334.4352, 13273.328150000001, 19199.403049999997, 258.82960000000026, 171.6086499999996, 2579.294149999999, 10643.136300000002, 5276.648400000001, 130754.4461, 25967.8492, 98401.47165, 5083.535600000001, 620.5996500000009, 200.7367, 109093.38190000002, 14135.86125, 3862.85095, 1893.2924500000001, 1645.1986999999992, 3865.672500000002, 967.6888999999992, 2119.0998500000005, 1230.5245000000007, 1788.7488000000008, 693.7150500000005, 1072.0571000000002, 8818.327500000001, 1024.2146999999995, 25633.0359, 23320.623299999996, 673.1012000000009, 2222.3002000000015, 61014.46195, 1798.2479000000003, 84.1216999999999, 12116.474599999998, 4210.0095999999985, 314.3817499999999, 447.9805499999999, 228.29715000000022, 857.4145500000011, 519.8693000000002, 1650.575849999999, 5387.092499999999, 3240.4637500000003, 277831.7656500001, 6361.4247, 221.1024500000001, 15152.461450000003, 74614.90974999998, 4723.702600000005, 1759.2794500000005, 7691.003450000003, 449.2458000000002, 4290.22515, 49.50310000000002, 2441.497700000003, 95.18614999999988, 4379.470049999998, 2092.353499999998, 331.8804999999998, 3466.876549999998, 661.835500000002, 120996.0934, 629.6973000000003, 10204.53555, 3189.4067999999993, 1626.1462500000007, 311.83700000000005, 6595.661949999999, 766.3864500000003, 5832.719049999997, 622.8069000000003, 7538.644450000001, 90435.91854999997, 691.8538499999994, 19856.873300000003, 535.360100000001, 626.5313499999994, 160407.01739999998, 1773.1797999999994, 23848.098950000003, 412.3286000000004, 9071.85025, 77140.08305, 28072.59055000001, 3928.6560000000018, 928.5198500000002, 150.85995000000014, 11993.837499999998, 1933.3202499999993, 10484.912499999999, 104.0705, 2030.9136499999997, 995.7477499999995, 12849.491750000001, 2338.2236, 87.6514499999999, 24800.063850000002, 25153.20225, 1055.6573000000005, 694.9957499999987, 17828.574000000004, 76.1506500000003, 2596.9522000000006, 21308.426099999993, 3866.2829500000007, 3592.980500000001, 125.80120000000004, 296.64504999999923, 147.27640000000002, 16730.887099999993, 894.561599999999, 9031.985350000003, 2691.973500000001, 266.99935000000016, 2960.777250000001, 6210.0092, 433.22290000000044, 59792.20055, 4647.302199999999, 4789.46715, 3166.24635, 982.3338500000001, 5318.79285, 1205.97105, 30287.507150000005, 2542.6319000000003, 18771.75479999999, 988.8504000000003, 12833.495099999998, 6200.59555, 362.6848000000004, 1644.2095499999996, 4357.1161, 1328.4182000000008, 4486.79725, 40020.7544, 97421.5079, 12820.688849999999, 2030.1669000000004, 2788.8766499999983, 6761.3549, 1066.2487, 24087.15335, 466.37290000000036, 16821.8598, 149.65445000000034, 1246.0752999999997, 2882.825749999999, 26858.9004, 528.0869999999999, 19324.892450000003, 15629.004099999998, 98778.0215, 519.7051000000002, 43175.931500000006, 515.3512000000003, 1439.2336, 7132.1326, 1231.4716000000012, 486.8542000000008, 1815.2694999999983, 12663.202550000007, 59650.16855, 4806.4469500000005, 4913.544050000002, 8088.978949999999, 495.26579999999933, 11617.636250000003, 4081.1772499999997, 160451.48539999995, 16713.16865, 18227.059300000008, 26672.41565000001, 1043.1385999999998, 425.01955000000004, 130230.89709999993, 628.2395999999999, 22252.702399999995, 484.91110000000015, 210.3083500000005, 26.957550000000033, 5888.0771, 2141.0891, 220863.50235000002, 5737.141799999999, 3993.392899999999, 1562.9962500000004, 49597.06825, 128177.13039999997, 28657.39415000001, 1132.2413499999998, 26731.31054999999, 1059.2594, 4745.592499999999, 1920.1159499999983, 127.58095000000012, 12190.44565, 555.7345500000004, 9237.729949999997, 46.56134999999999, 236.1499999999998, 4298.163950000001, 216726.06719999996, 62.61789999999998, 2463.3468, 58960.8349, 5199.69665, 9304.32905, 9313.074099999998, 255.92869999999982, 69.30369999999995, 6764.494600000001, 6947.59405, 9963.741200000004, 2287.71385, 109.46640000000002, 2293.3109999999997, 16593.583899999998, 24518.62785, 355.55969999999905, 20953.521099999998, 2855.7088999999996, 3858.7823000000003, 8844.460499999997]plt.hist(area_list, bins=256, normed=0, facecolor='black', edgecolor='black', alpha=1, histtype = 'bar')plt.savefig(self.histo_img_path)

3.4 plt图像存储

plt.hist(salary, group, histtype='bar', rwidth=0.8) 
plt.legend() 
plt.xlabel('salary-group') 
plt.ylabel('salary') 
plt.title(u'测试例子——直方图', FontProperties=font)

用相应的文件,进行输入与测试。

        if not os.path.isdir(self.histo_img_dir):os.makedirs(self.histo_img_dir)area_list=[235939.0035, 64153.92420000001, 797.3219000000005, 40377.498349999994, 825.0993000000005, 122283.17504999999, 110586.77519999997, 23235.967249999994, 7660.271999999997, 2845.3616000000015, 5078.0296, 39.01750000000018, 13050.5062, 1644.8198499999994, 9904.229450000003, 2675.0394999999994, 201191.88094999996, 41419.92445, 1120.6729999999989, 27064.562149999998, 6759.543450000003, 1151.2815999999998, 5645.972500000001, 70239.99469999998, 2468.0781500000003, 74.00769999999972, 274.57424999999995, 4085.4411499999997, 54892.3609, 20344.5, 4100.955550000003, 306.8878499999999, 598.1379500000002, 98200.96145, 1548.7608999999993, 48371.46090000002, 93.5650500000001, 996.3833999999999, 5999.726849999999, 65061.527849999984, 1343.6522999999995, 2444.3842, 20702.087949999997, 41612.6938, 8716.784449999997, 35314.11059999999, 1057.09515, 679.1063999999998, 32340.461000000007, 107332.58170000001, 564.0283000000005, 308.6485500000002, 6411.314050000004, 16892.101950000004, 2804.765700000001, 4544.119050000003, 848.3638999999996, 22555.577249999988, 704.9074499999999, 2714.924900000001, 400.17665000000056, 3047.8062999999997, 672.6902500000001, 1154.583900000002, 159.42344999999992, 2678.627699999999, 53877.39709999998, 6252.4588, 13623.237050000003, 1205.1451499999996, 3420.360850000001, 64.22899999999954, 1196.9678999999999, 5284.887600000001, 21816.5393, 40446.13375, 1009.3892000000008, 758.1965500000001, 13942.263000000003, 26605.372250000004, 1544.6851499999987, 11569.050200000003, 27346.60955, 7509.192800000006, 7443.993800000002, 187.2916000000001, 430.38455000000033, 1731.0626999999993, 22365.95915, 6107.7645999999995, 4146.846700000001, 5192.632750000001, 177.79995000000005, 2192.3364500000007, 30382.73005, 5084.077300000002, 24334.4352, 13273.328150000001, 19199.403049999997, 258.82960000000026, 171.6086499999996, 2579.294149999999, 10643.136300000002, 5276.648400000001, 130754.4461, 25967.8492, 98401.47165, 5083.535600000001, 620.5996500000009, 200.7367, 109093.38190000002, 14135.86125, 3862.85095, 1893.2924500000001, 1645.1986999999992, 3865.672500000002, 967.6888999999992, 2119.0998500000005, 1230.5245000000007, 1788.7488000000008, 693.7150500000005, 1072.0571000000002, 8818.327500000001, 1024.2146999999995, 25633.0359, 23320.623299999996, 673.1012000000009, 2222.3002000000015, 61014.46195, 1798.2479000000003, 84.1216999999999, 12116.474599999998, 4210.0095999999985, 314.3817499999999, 447.9805499999999, 228.29715000000022, 857.4145500000011, 519.8693000000002, 1650.575849999999, 5387.092499999999, 3240.4637500000003, 277831.7656500001, 6361.4247, 221.1024500000001, 15152.461450000003, 74614.90974999998, 4723.702600000005, 1759.2794500000005, 7691.003450000003, 449.2458000000002, 4290.22515, 49.50310000000002, 2441.497700000003, 95.18614999999988, 4379.470049999998, 2092.353499999998, 331.8804999999998, 3466.876549999998, 661.835500000002, 120996.0934, 629.6973000000003, 10204.53555, 3189.4067999999993, 1626.1462500000007, 311.83700000000005, 6595.661949999999, 766.3864500000003, 5832.719049999997, 622.8069000000003, 7538.644450000001, 90435.91854999997, 691.8538499999994, 19856.873300000003, 535.360100000001, 626.5313499999994, 160407.01739999998, 1773.1797999999994, 23848.098950000003, 412.3286000000004, 9071.85025, 77140.08305, 28072.59055000001, 3928.6560000000018, 928.5198500000002, 150.85995000000014, 11993.837499999998, 1933.3202499999993, 10484.912499999999, 104.0705, 2030.9136499999997, 995.7477499999995, 12849.491750000001, 2338.2236, 87.6514499999999, 24800.063850000002, 25153.20225, 1055.6573000000005, 694.9957499999987, 17828.574000000004, 76.1506500000003, 2596.9522000000006, 21308.426099999993, 3866.2829500000007, 3592.980500000001, 125.80120000000004, 296.64504999999923, 147.27640000000002, 16730.887099999993, 894.561599999999, 9031.985350000003, 2691.973500000001, 266.99935000000016, 2960.777250000001, 6210.0092, 433.22290000000044, 59792.20055, 4647.302199999999, 4789.46715, 3166.24635, 982.3338500000001, 5318.79285, 1205.97105, 30287.507150000005, 2542.6319000000003, 18771.75479999999, 988.8504000000003, 12833.495099999998, 6200.59555, 362.6848000000004, 1644.2095499999996, 4357.1161, 1328.4182000000008, 4486.79725, 40020.7544, 97421.5079, 12820.688849999999, 2030.1669000000004, 2788.8766499999983, 6761.3549, 1066.2487, 24087.15335, 466.37290000000036, 16821.8598, 149.65445000000034, 1246.0752999999997, 2882.825749999999, 26858.9004, 528.0869999999999, 19324.892450000003, 15629.004099999998, 98778.0215, 519.7051000000002, 43175.931500000006, 515.3512000000003, 1439.2336, 7132.1326, 1231.4716000000012, 486.8542000000008, 1815.2694999999983, 12663.202550000007, 59650.16855, 4806.4469500000005, 4913.544050000002, 8088.978949999999, 495.26579999999933, 11617.636250000003, 4081.1772499999997, 160451.48539999995, 16713.16865, 18227.059300000008, 26672.41565000001, 1043.1385999999998, 425.01955000000004, 130230.89709999993, 628.2395999999999, 22252.702399999995, 484.91110000000015, 210.3083500000005, 26.957550000000033, 5888.0771, 2141.0891, 220863.50235000002, 5737.141799999999, 3993.392899999999, 1562.9962500000004, 49597.06825, 128177.13039999997, 28657.39415000001, 1132.2413499999998, 26731.31054999999, 1059.2594, 4745.592499999999, 1920.1159499999983, 127.58095000000012, 12190.44565, 555.7345500000004, 9237.729949999997, 46.56134999999999, 236.1499999999998, 4298.163950000001, 216726.06719999996, 62.61789999999998, 2463.3468, 58960.8349, 5199.69665, 9304.32905, 9313.074099999998, 255.92869999999982, 69.30369999999995, 6764.494600000001, 6947.59405, 9963.741200000004, 2287.71385, 109.46640000000002, 2293.3109999999997, 16593.583899999998, 24518.62785, 355.55969999999905, 20953.521099999998, 2855.7088999999996, 3858.7823000000003, 8844.460499999997]plt.hist(area_list, bins=512, normed=0, facecolor='black', edgecolor='black', alpha=1, histtype = 'bar')plt.legend()plt.xlabel('badcase size')plt.ylabel('badcase numbers')plt.title('class '+str(1)+'badcase histogram')img_name=self.histo_img_dir+'class1.jpg'plt.savefig(img_name)plt.hist(area_list, bins=10, normed=0, facecolor='black', edgecolor='black', alpha=1, histtype = 'bar')plt.legend()plt.xlabel('badcase size')plt.ylabel('badcase numbers')plt.title('class '+str(2)+'badcase histogram')img_name=self.histo_img_dir+'class2.jpg'plt.savefig(img_name)

 存储之后,务必记得删掉相应的plt.close('all'),不然生成的直方图非常类似。

3.4 直方图的值

可以print出一些大致查看一下。

[683.9160000000005, 2442.46605, 14484.758699999993, 3386.5678499999995, 14479.344549999996, 13515.022249999998, 7965.106, 5678.810250000002, 2327.091099999999, 13631.614450000001, 2796.608800000001, 34886.04705, 325.50250000000017, 34519.20375, 1698.1252500000007, 48642.866050000026, 
71689.66249999999, 1773.4906499999995, 492.9880500000001, 109111.37125000001, 1019.5727999999996, 1242.2530000000004, 4899.727649999999, 8881.890700000002, 930.5868999999998, 848.3562, 2310.67225, 603.83655, 1731.6071000000013, 24791.8876, 1082.5951500000006, 6472.634000000001, 94612.16660000001, 691.79215, 4489.496849999999, 5564.19405, 1092.7272499999997, 22771.6285, 1747.8156000000008, 1473.8869999999995, 11573.610550000003, 5180.9365, 72986.89145000002, 210.46294999999998, 3841.575599999999, 497.43615000000017, 5046.022349999997, 1744.5338500000003, 1092.3092000000001, 1286.9624500000007, 434.8083500000001, 
8087.406949999999, 1670.8321500000004, 4459.141700000001, 1989.5381500000003, 592.2093, 846.8612499999999, 389.14055000000036, 30712.36465000001, 14510.547649999999, 87553.47919999997, 16214.509000000002, 52923.730299999996, 34677.3077, 32366.462899999988, 602.9749500000005, 241.78099999999992, 
1190.1633999999995, 2205.7668000000003, 1239.5366, 1396.8755, 9500.852600000002, 20389.856850000004, 3651.285800000002, 95486.64685000003, 6979.759900000002, 8463.49585, 28137.6279, 12057.38095, 8713.739650000001, 6117.859549999999, 11247.828699999998, 4633.14075, 2064.767450000002, 964.5043000000002, 613.1057, 
1979.5362500000003, 2753.947499999998, 20320.293299999983, 3211.1752999999985, 1601.1844000000003, 55942.1499, 16455.539300000004, 23301.4676, 1834.5064000000004, 4534.887249999999, 1219.8842499999998, 1868.28045, 1552.0870000000004, 5627.17175, 
10954.283500000005, 91.5470000000001, 1237.39605, 2055.6168, 2427.7046000000005, 2742.52815, 7729.81905, 61379.4444, 2242.7182000000007, 776.7938500000002, 25998.50349999999, 11309.197699999997, 19003.994399999996, 500.52919999999864, 
553.5479500000002, 337.13875000000047, 3546.14375, 834.4200999999995, 2907.019050000001, 4721.70215, 24307.453050000004, 30627.230450000003, 64338.71099999998, 68099.72225000002, 1321.9788999999992, 4787.533700000001, 21151.617250000007, 9178.8901, 4339.022200000003, 2396.86255, 802.7199499999999,16676.49185, 1824.0607499999999, 1507.88895, 587.7183999999996, 2571.5704, 2102.1658500000003, 12234.506650000001, 772.6651500000014, 4435.3801, 5508.0989000000045, 3142.5754, 1811.7970500000013, 3051.871, 3727.1215999999986, 18412.6569, 499.1101, 19067.370849999992, 12836.944349999998, 5653.223150000002, 2481.26605, 1582.50975, 2423.39585, 15213.736899999994, 28413.067950000004, 
576.3890499999994, 201.07575000000003, 11694.643699999997, 11040.114499999998, 543.3011500000001, 44412.159199999995, 544.8582000000001, 673.0482999999999, 14934.810599999999, 4994.224450000001, 516.8612000000005, 7971.805999999999, 61756.51254999999, 522.83385, 451.03904999999986, 7023.577050000001, 
7265.986849999999, 61958.96604999999, 5680.64175, 9141.920350000002, 15217.30065, 602.6508999999999, 50731.444700000015, 3063.1288500000023, 41144.99094999999, 20797.686599999997, 867.4010000000002, 26819.547, 796.9999499999998, 10562.143299999998, 3913.147049999999]
[1724.1692499999997, 366.15034999999966, 15802.880550000003, 1225.0612, 5476.302099999996, 610.3301500000001, 429.36165000000045, 733.2061000000003, 1944.4293500000003, 22528.827299999997, 2047.4176500000003, 4414.537699999999, 47382.45214999999, 2869.1595500000008, 43092.030199999994, 1618.52535, 367.96160000000003, 5022.433500000001, 1605.3408, 346.34710000000075, 5044.8439499999995, 1321.19305, 3159.83075, 2618.5579500000026, 8377.59445, 10347.806049999994, 38315.6847, 833.8229499999998, 620.6976499999996, 
6355.030249999999, 302.02639999999985, 1520.7268499999996, 1060.9626, 8535.399400000002, 990.3860999999995, 14585.555250000005, 181.53479999999993, 2383.0066000000006, 439.6647499999999, 170.79249999999968, 54813.32545, 1833.8056500000005, 5240.37735, 5066.245699999999, 42476.40844999998, 1260.8629999999998, 336.687600000001, 1609.8348999999998, 2977.436950000002, 1205.3774499999984, 693.5048000000007, 8646.50815, 482.7517999999998, 
1578.913200000001]
[351.598449999999, 455.98845000000006, 126.78010000000019, 514.8395000000003, 406.4549999999999, 7550.0779, 84.9699000000001, 9.678950000000109, 35.56769999999989, 39.973200000000126, 394.5030499999988, 100.25860000000007, 37.878299999999896, 33.97390000000004, 248.32479999999987, 513.4488999999992, 139.4486499999998, 311.90315000000027, 428.46459999999956, 869.41345, 
243.80120000000008, 110.08284999999972, 1920.022200000001, 1054.8499499999994, 15162.020400000001, 185.6614999999997, 63.12685000000007, 224.28239999999988, 345.07704999999976, 257.955849999999, 3818.948149999999, 38.15974999999986, 2438.069849999999, 247.61110000000124, 4717.834649999999, 2854.0712999999982, 13423.968249999994, 703.90825, 32.716900000000166, 322.78010000000023, 188.23489999999902, 776.5165999999997, 706.7350999999991, 174.32570000000058, 169.27564999999984, 421.2784000000006, 40.16000000000007, 171.9341000000002, 4082.148650000001, 49.973049999999944, 2478.508799999998, 12.463999999999809, 29.90400000000009, 32.42195000000007, 2013.7202000000023, 1111.2301499999999, 951.9321500000003, 5501.7800000000025, 19054.2669, 1063.02525, 1231.7002999999972, 108.1362, 2642.0498000000016, 362.2731, 14.572200000000047, 411.22345, 150.87795000000008, 94.12419999999995, 2965.7859999999982, 99.06964999999985, 1374.7440999999978, 447.42525000000023, 73.95509999999983, 17757.11055, 13.371199999999863, 26045.760599999998, 75.52944999999983, 319.91989999999953, 690.5670500000001, 651.0274999999993, 571.9453500000006, 19.095449999999886, 
430.0609000000003, 472.3264499999994, 14.139350000000046, 3329.5093500000003, 8418.920500000004, 156.1894499999998, 4515.5091, 203.52659999999946, 182.8668000000001, 8054.924750000002, 62.799449999999986, 40.03914999999982, 15.188800000000015, 130.68259999999958, 343.4634499999999, 46.27455000000004, 180.10404999999986, 14429.936999999994, 19.00760000000006, 1212.6895999999997, 1272.8396999999989, 10439.520400000009, 4912.1141, 1462.5064, 83.44374999999991, 234.65625000000037, 54.64059999999992, 2391.116800000001, 116.79520000000005, 77.21045000000025, 1516.4389499999997, 73.30219999999991, 89.63220000000037, 136.05375000000046, 32780.061699999984, 106.98255000000017, 1452.5062499999997, 103.90935000000012, 319.4284000000001, 16.047649999999976, 6393.757299999998]

四、图片URL

4.1 标注的格式

标注之中,图片的名称的格式:

{"info": {"description": "COCO 2014 Dataset","url": "http://cocodataset.org","version": "1.0","year": 2014,"contributor": "COCO Consortium","date_created": "2017/
09/01"},"images": [{"license": 3,"file_name": "COCO_val2014_000000391895.jpg","coco_url": "http://images.cocodataset.org/val2014/COCO_val2014_000000391895.jpg","h
eight": 360,"width": 640,"date_captured": "2013-11-14 11:18:45","flickr_url": "http://farm9.staticflickr.com/8186/8119368305_4e622c8349_z.jpg","id": 391895},{"lic
ense": 4,"file_name": "COCO_val2014_000000522418.jpg","coco_url": "http://images.cocodataset.org/val2014/COCO_val2014_000000522418.jpg","height": 480,"width": 640
,"date_captured": "2013-11-14 11:38:44","flickr_url": "http://farm1.staticflickr.com/1/127244861_ab0c0381e7_z.jpg","id": 522418},{"license": 3,"file_name": "COCO_
val2014_000000184613.jpg","coco_url": "http://images.cocodataset.org/val2014/COCO_val2014_000000184613.jpg","height": 336,"width": 500,"date_captured": "2013-11-1
4 12:36:29","flickr_url": "http://farm3.staticflickr.com/2169/2118578392_1193aa04a0_z.jpg","id": 184613},{"license": 3,"file_name": "COCO_val2014_000000318219.jpg
","coco_url": "http://images.cocodataset.org/val2014/COCO_val2014_000000318219.jpg","height": 640,"width": 556,"date_captured": "2013-11-14 13:02:53","flickr_url"
: "http://farm5.staticflickr.com/4125/5094763076_813ea2751b_z.jpg","id": 318219},{"license": 3,"file_name": "COCO_val2014_000000554625.jpg","coco_url": "http://im
ages.cocodataset.org/val2014/COCO_val2014_000000554625.jpg","height": 640,"width": 426,"date_captured": "2013-11-14 16:03:19","flickr_url": "http://farm5.staticfl
ickr.com/4086/5094162993_8f59d8a473_z.jpg","id": 554625},{"license": 4,"file_name": "COCO_val2014_000000397133.jpg","coco_url": "http://images.cocodataset.org/val
2014/COCO_val2014_000000397133.jpg","height": 427,"width": 640,"date_captured": "2013-11-14 17:02:52","flickr_url": "http://farm7.staticflickr.com/6116/6255196340
_da26cf2c9e_z.jpg","id": 397133},{"license": 3,"file_name": "COCO_val2014_000000574769.jpg","coco_url": "http://images.cocodataset.org/val2014/COCO_val2014_000000
574769.jpg","height": 640,"width": 480,"date_captured": "2013-11-14 17:07:59","flickr_url": "http://farm8.staticflickr.com/7010/6728227647_3d5a0d55ee_z.jpg","id":574769},{"license": 4,"file_name": "COCO_val2014_000000060623.jpg","coco_url": "http://images.cocodataset.org/val2014/COCO_val2014_000000060623.jpg","height": 42
7,"width": 640,"date_captured": "2013-11-14 17:24:15","flickr_url": "http://farm7.staticflickr.com/6080/6113512699_37b4c98473_z.jpg","id": 60623},{"license": 2,"f
ile_name": "COCO_val2014_000000309022.jpg","coco_url": "http://images.cocodataset.org/val2014/COCO_val2014_000000309022.jpg","height": 480,"width": 640,"date_capt
ured": "2013-11-14 17:28:23","flickr_url": "http://farm4.staticflickr.com/3790/10167396295_e63f2856d0_z.jpg","id": 309022},{"license": 2,"file_name": "COCO_val201
4_000000005802.jpg","coco_url": "http://images.cocodataset.org/val2014/COCO_val2014_000000005802.jpg","height": 479,"width": 640,"date_captured": "2013-11-14 17:2
8:25","flickr_url": "http://farm4.staticflickr.com/3810/9614287841_1b724dbbc5_z.jpg","id": 5802},{"license": 2,"file_name": "COCO_val2014_000000222564.jpg","coco_
url": "http://images.cocodataset.org/val2014/COCO_val2014_000000222564.jpg","height": 480,"width": 640,"date_captured": "2013-11-14 17:30:34","flickr_url": "http:
//farm8.staticflickr.com/7390/10166966765_c96225b556_z.jpg","id": 222564},{"license": 1,"file_name": "COCO_val2014_000000118113.jpg","coco_url": "http://images.co
codataset.org/val2014/COCO_val2014_000000118113.jpg","height": 640,"width": 480,"date_captured": "2013-11-14 17:44:50","flickr_url": "http://farm8.staticflickr.co
m/7030/6555665525_b242809dc2_z.jpg","id": 118113},

4.2 添加输出badcase的URL

coco_url,之前查找img_ID的后面增加查找URL的语句。

        # loading json annotationwith open(self.area_annotation_document) as f:print('loading:', self.area_annotation_document)instances_val = json.load(f)print('loading done.')annotations_list = instances_val['annotations']images_list = instances_val['images']coco_categories = instances_val['categories']# from predict idx to json category id listpredict_idx_to_json_id = {}for idx in range(len(names)):predict_idx_to_json_id[idx] = coco_categories[idx]['id']# from image name find image iddef from_image_name_find_id_and_URL(file_name, images_list):for image_idx in range(len(images_list)):# if (image_idx%10000==0):#     print('from image_name find id:',image_idx,'/',len(images_list))if file_name == images_list[image_idx]['file_name']:img_id = images_list[image_idx]['id']coco_url=images_list[image_idx]['coco_url']breakreturn img_id,coco_url

4.3 ULR的存储

存入dict之中,

        # generate label true predict negative area list dictltrue_pnegative_catagory_area_dict={}coco_badcase_img_url_dict={}for category_idx in range(self.class_num):ltrue_pnegative_catagory_area_dict[category_idx] = []coco_badcase_img_url_dict[category_idx]=[]for idx in range(len(self.ture_negative_name_dict[category_idx])):if idx%300==0:print('category:',category_idx,'finding area:',idx,'/',len(self.ture_negative_name_dict[category_idx]))img_id,coco_url=from_image_name_find_id_and_URL(file_name=self.ture_negative_name_dict[category_idx][idx], images_list=images_list)ltrue_pnegative_catagory_area_dict[category_idx].append(from_id_and_class_find_area(img_id=img_id, class_id=category_idx, annotations_list=annotations_list))coco_badcase_img_url_dict[category_idx].append(coco_url)# save coco_url into dict and pklif not os.path.exists(self.badcase_coco_url_path):with open(self.badcase_coco_url_path, 'wb') as f:print('writing to', self.badcase_coco_url_path)pickle.dump(coco_badcase_img_url_dict, f)

4.4 本地print

生成数组随机读出相应的图片

生成一个随机数

https://www.runoob.com/python3/python3-random-number.html

random.randint(a,b) 生成a,b之间的一个随机整数

序列乱序

>>> import random
>>> a=[1,2,3,4,5]
>>> a
[1, 2, 3, 4, 5]
>>> random.shuffle(a)
>>> a
[5, 4, 2, 1, 3]

生成1到n的列表

b=list(range(100))
>>> b
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 
85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99]
"""
created by xingxiangrui on 2019.5.23
this program is to :read badcase coco url and print some of them
"""
import torch.utils.data as data
import json
import os
import subprocess
from PIL import Image
import numpy as np
import torch
import pickle
from util import *
import pandas as pd
import matplotlib.pyplot as plt
import warnings
import randomclass coco_url_print():def __init__(self):# super(self).__init__()warnings.simplefilter("ignore")self.read_and_write_dir='/Users/Desktop/code/chun_ML_GCN/badcase_analyse/cls_gat_hist/'self.url_pkl_file_name='badcase_coco_url.pkl'self.url_pkl_file_path=self.read_and_write_dir+self.url_pkl_file_nameself.output_category=24self.output_num=3# load and print coco urldef run_coco_url_print(self):# loadint fileswith open(self.url_pkl_file_path,'rb') as f:print('loading ',self.url_pkl_file_path)coco_url_dict=pickle.load(f)random_idx=list(range(len(coco_url_dict[self.output_category])))random.shuffle(random_idx)print('category:', self.output_category,'output num:',self.output_num)for output_idx in range(self.output_num):print(coco_url_dict[self.output_category][random_idx[output_idx]])print('program end...')if __name__ == '__main__':coco_url_print().run_coco_url_print()

这篇关于COCO数据集标注框的读取及badcase analyse的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/269214

相关文章

Python在二进制文件中进行数据搜索的实战指南

《Python在二进制文件中进行数据搜索的实战指南》在二进制文件中搜索特定数据是编程中常见的任务,尤其在日志分析、程序调试和二进制数据处理中尤为重要,下面我们就来看看如何使用Python实现这一功能吧... 目录简介1. 二进制文件搜索概述2. python二进制模式文件读取(rb)2.1 二进制模式与文本

Springboot配置文件相关语法及读取方式详解

《Springboot配置文件相关语法及读取方式详解》本文主要介绍了SpringBoot中的两种配置文件形式,即.properties文件和.yml/.yaml文件,详细讲解了这两种文件的语法和读取方... 目录配置文件的形式语法1、key-value形式2、数组形式读取方式1、通过@value注解2、通过

C#实现将XML数据自动化地写入Excel文件

《C#实现将XML数据自动化地写入Excel文件》在现代企业级应用中,数据处理与报表生成是核心环节,本文将深入探讨如何利用C#和一款优秀的库,将XML数据自动化地写入Excel文件,有需要的小伙伴可以... 目录理解XML数据结构与Excel的对应关系引入高效工具:使用Spire.XLS for .NETC

Qt实现对Word网页的读取功能

《Qt实现对Word网页的读取功能》文章介绍了几种在Qt中实现Word文档(.docx/.doc)读写功能的方法,包括基于QAxObject的COM接口调用、DOCX模板替换及跨平台解决方案,重点讨论... 目录1. 核心实现方式2. 基于QAxObject的COM接口调用(Windows专用)2.1 环境

MySQL数据目录迁移的完整过程

《MySQL数据目录迁移的完整过程》文章详细介绍了将MySQL数据目录迁移到新硬盘的整个过程,包括新硬盘挂载、创建新的数据目录、迁移数据(推荐使用两遍rsync方案)、修改MySQL配置文件和重启验证... 目录1,新硬盘挂载(如果有的话)2,创建新的 mysql 数据目录3,迁移 MySQL 数据(推荐两

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

MySQL快速复制一张表的四种核心方法(包括表结构和数据)

《MySQL快速复制一张表的四种核心方法(包括表结构和数据)》本文详细介绍了四种复制MySQL表(结构+数据)的方法,并对每种方法进行了对比分析,适用于不同场景和数据量的复制需求,特别是针对超大表(1... 目录一、mysql 复制表(结构+数据)的 4 种核心方法(面试结构化回答)方法 1:CREATE

详解C++ 存储二进制数据容器的几种方法

《详解C++存储二进制数据容器的几种方法》本文主要介绍了详解C++存储二进制数据容器,包括std::vector、std::array、std::string、std::bitset和std::ve... 目录1.std::vector<uint8_t>(最常用)特点:适用场景:示例:2.std::arra

MySQL中的DELETE删除数据及注意事项

《MySQL中的DELETE删除数据及注意事项》MySQL的DELETE语句是数据库操作中不可或缺的一部分,通过合理使用索引、批量删除、避免全表删除、使用TRUNCATE、使用ORDERBY和LIMI... 目录1. 基本语法单表删除2. 高级用法使用子查询删除删除多表3. 性能优化策略使用索引批量删除避免

MySQL 数据库进阶之SQL 数据操作与子查询操作大全

《MySQL数据库进阶之SQL数据操作与子查询操作大全》本文详细介绍了SQL中的子查询、数据添加(INSERT)、数据修改(UPDATE)和数据删除(DELETE、TRUNCATE、DROP)操作... 目录一、子查询:嵌套在查询中的查询1.1 子查询的基本语法1.2 子查询的实战示例二、数据添加:INSE