COCO数据集标注框的读取及badcase analyse

2023-10-23 16:59

本文主要是介绍COCO数据集标注框的读取及badcase analyse,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目的:查看badcase的错误的时候的框大小值。

本地调试程序至关重要,不然每次都要用服务器print,非常耗时耗力。

macOS上PyCharm本地配置Anaconda环境

博主代码地址:https://github.com/Xingxiangrui/multi_label_badcase_analyse/blob/master/badcase_analyse.py

目录

一、coco的标签

1.1 coco标注的类型

1.2 每种json内部

1.3 Object Instance

二、标签的加载

2.1 标签的加载

2.2 coco类别标签

三、创建直方图以及写入

3.1 创建直方图

3.2 plt.hist

3.3 创建直方图

3.4 plt图像存储

3.4 直方图的值

四、图片URL

4.1 标注的格式

4.2 添加输出badcase的URL

4.3 ULR的存储

4.4 本地print


一、coco的标签

1.1 coco标注的类型

COCO通过大量使用Amazon Mechanical Turk来收集数据。COCO数据集现在有3种标注类型:object instances(目标实例), object keypoints(目标上的关键点), 和image captions(看图说话),使用JSON文件存储。

$ ls
captions_train2014.json  instances_train2014.json  person_keypoints_train2014.json
captions_val2014.json    instances_val2014.json    person_keypoints_val2014.json

1.2 每种json内部

三种文件共享object instances(目标实例)、object keypoints(目标上的关键点)、image captions(看图说话)这3种类型共享这些基本类型:info、image、license

{"info": info,"licenses": [license],"images": [image],"annotations": [annotation],
}info{"year": int,"version": str,"description": str,"contributor": str,"url": str,"date_created": datetime,
}
license{"id": int,"name": str,"url": str,
} 
image{"id": int,"width": int,"height": int,"file_name": str,"license": int,"flickr_url": str,"coco_url": str,"date_captured": datetime,
}

1.3 Object Instance

目标实例,这里面有相应的bbox信息,

分为下面这些段落

{"info": info,"licenses": [license],"images": [image],"annotations": [annotation],"categories": [category]
}

其中的annotations为:

annotation{"id": int,    "image_id": int,"category_id": int,"segmentation": RLE or [polygon],"area": float,"bbox": [x,y,width,height],"iscrowd": 0 or 1,
}

包括了bbox,即标注框的坐标,以及area,标注区域的面积。

二、标签的加载

https://blog.csdn.net/banjuanshu/article/details/78370225

2.1 标签的加载

加载之后,会像dict一样。

        with open(self.area_annotation_document) as f:print('loading:',self.area_annotation_document)instances_val = json.load(f)print('loading done.')

其中annotations是对图片中物体标注的数据集,categories是所有物体的分类集,images是原始图片的信息

2.2 coco类别标签

category id

正常网络预测是80类,编写程序print出相应的预测。

    def coco_categories_names(self):# load json names idwith open(self.area_annotation_document) as f:print('loading:',self.area_annotation_document)instances_val = json.load(f)print('loading done.')coco_categories=instances_val['categories']# load names idwith open('sk_spectral_cluster/coco_names.pkl', 'rb') as f:print("loading coco_names.pkl")names = pickle.load(f)print('names',names)print('coco json categories id',coco_categories)

 网络预测结果对应的names

names ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 
'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 
'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 
'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 
'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball 
glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 
'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 
'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote','keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']

coco labels,与前面的names顺序一致,但是id一共有90类。

coco json categories id [{'supercategory': 'person', 'id': 1, 'name': 'person'}, {'supercategory': 'vehicle', 'id': 2, 'name': 'bicycle'}, {'supercategory': 
'vehicle', 'id': 3, 'name': 'car'}, {'supercategory': 'vehicle', 'id': 4, 'name': 'motorcycle'}, {'supercategory': 'vehicle', 'id': 5, 'name': 'airplane'}, 
{'supercategory': 'vehicle', 'id': 6, 'name': 'bus'}, {'supercategory': 'vehicle', 'id': 7, 'name': 'train'}, {'supercategory': 'vehicle', 'id': 8, 'name': 'truck'}, 
{'supercategory': 'vehicle', 'id': 9, 'name': 'boat'}, {'supercategory': 'outdoor', 'id': 10, 'name': 'traffic light'}, {'supercategory': 'outdoor', 'id': 11, 'name': 
'fire hydrant'}, {'supercategory': 'outdoor', 'id': 13, 'name': 'stop sign'}, {'supercategory': 'outdoor', 'id': 14, 'name': 'parking meter'}, {'supercategory': 
'outdoor', 'id': 15, 'name': 'bench'}, {'supercategory': 'animal', 'id': 16, 'name': 'bird'}, {'supercategory': 'animal', 'id': 17, 'name': 'cat'}, 
{'supercategory': 'animal', 'id': 18, 'name': 'dog'}, {'supercategory': 'animal', 'id': 19, 'name': 'horse'}, {'supercategory': 'animal', 'id': 20, 'name': 'sheep'},{'supercategory': 'animal', 'id': 21, 'name': 'cow'}, {'supercategory': 'animal', 'id': 22, 'name': 'elephant'}, {'supercategory': 'animal', 'id': 23, 'name': 
'bear'}, {'supercategory': 'animal', 'id': 24, 'name': 'zebra'}, {'supercategory': 'animal', 'id': 25, 'name': 'giraffe'}, {'supercategory': 'accessory', 'id': 27, 
'name': 'backpack'}, {'supercategory': 'accessory', 'id': 28, 'name': 'umbrella'}, {'supercategory': 'accessory', 'id': 31, 'name': 'handbag'}, {'supercategory': 
'accessory', 'id': 32, 'name': 'tie'}, {'supercategory': 'accessory', 'id': 33, 'name': 'suitcase'}, {'supercategory': 'sports', 'id': 34, 'name': 'frisbee'}, 
{'supercategory': 'sports', 'id': 35, 'name': 'skis'}, {'supercategory': 'sports', 'id': 36, 'name': 'snowboard'}, {'supercategory': 'sports', 'id': 37, 'name': 
'sports ball'}, {'supercategory': 'sports', 'id': 38, 'name': 'kite'}, {'supercategory': 'sports', 'id': 39, 'name': 'baseball bat'}, {'supercategory': 
'sports', 'id': 40, 'name': 'baseball glove'}, {'supercategory': 'sports', 'id': 41, 'name': 'skateboard'}, {'supercategory': 'sports', 'id': 42, 'name': 
'surfboard'}, {'supercategory': 'sports', 'id': 43, 'name': 'tennis racket'}, {'supercategory': 'kitchen', 'id': 44, 'name': 'bottle'}, {'supercategory': 
'kitchen', 'id': 46, 'name': 'wine glass'}, {'supercategory': 'kitchen', 'id': 47, 'name': 'cup'}, {'supercategory': 'kitchen', 'id': 48, 'name': 'fork'}, 
{'supercategory': 'kitchen', 'id': 49, 'name': 'knife'}, {'supercategory': 'kitchen', 'id': 50, 'name': 'spoon'}, {'supercategory': 'kitchen', 'id': 51, 
'name': 'bowl'}, {'supercategory': 'food', 'id': 52, 'name': 'banana'}, {'supercategory': 'food', 'id': 53, 'name': 'apple'}, {'supercategory': 'food', 
'id': 54, 'name': 'sandwich'}, {'supercategory': 'food', 'id': 55, 'name': 'orange'}, {'supercategory': 'food', 'id': 56, 'name': 'broccoli'}, 
{'supercategory': 'food', 'id': 57, 'name': 'carrot'}, {'supercategory': 'food', 'id': 58, 'name': 'hot dog'}, {'supercategory': 'food', 'id': 59, 'name': 'pizza'},{'supercategory': 'food', 'id': 60, 'name': 'donut'}, {'supercategory': 'food', 'id': 61, 'name': 'cake'}, {'supercategory': 'furniture', 'id': 62, 'name': 
'chair'}, {'supercategory': 'furniture', 'id': 63, 'name': 'couch'}, {'supercategory': 'furniture', 'id': 64, 'name': 'potted plant'}, {'supercategory':'furniture', 'id': 65, 'name': 'bed'}, {'supercategory': 'furniture', 'id': 67, 'name': 'dining table'}, {'supercategory': 'furniture', 'id': 70, 'name': 
'toilet'}, {'supercategory': 'electronic', 'id': 72, 'name': 'tv'}, {'supercategory': 'electronic', 'id': 73, 'name': 'laptop'}, {'supercategory': 
'electronic', 'id': 74, 'name': 'mouse'}, {'supercategory': 'electronic', 'id': 75, 'name': 'remote'}, {'supercategory': 'electronic', 'id': 76, 'name': 'keyboard'}, 
{'supercategory': 'electronic', 'id': 77, 'name': 'cell phone'}, {'supercategory': 'appliance', 'id': 78, 'name': 'microwave'}, {'supercategory': 'appliance', 'id': 
79, 'name': 'oven'}, {'supercategory': 'appliance', 'id': 80, 'name': 'toaster'}, {'supercategory': 'appliance', 'id': 81, 'name': 'sink'}, {'supercategory': 
'appliance', 'id': 82, 'name': 'refrigerator'}, {'supercategory': 'indoor', 'id': 84, 'name': 'book'}, {'supercategory': 'indoor', 'id': 85, 'name': 'clock'}, 
{'supercategory': 'indoor', 'id': 86, 'name': 'vase'}, {'supercategory': 'indoor', 'id': 87, 'name': 'scissors'}, {'supercategory': 'indoor', 'id': 88, 'name': 'teddybear'}, {'supercategory': 'indoor', 'id': 89, 'name': 'hair drier'}, {'supercategory': 'indoor', 'id': 90, 'name': 'toothbrush'}]

结果打出来发现coco的标签有跳跃的现象:

38 coco_json: id 43 names tennis racket
39 names: bottle
39 coco_json: id 44 names bottle
40 names: wine glass
40 coco_json: id 46 names wine glass
41 names: cup
41 coco_json: id 47 names cup

可以再多创建一个映射,从网络预测输出到coco的category id的映射。

        # load json names idwith open(self.area_annotation_document) as f:print('loading:',self.area_annotation_document)instances_val = json.load(f)print('loading done.')coco_categories=instances_val['categories']# load names idwith open('sk_spectral_cluster/coco_names.pkl', 'rb') as f:print("loading coco_names.pkl")names = pickle.load(f)predict_id_to_json_id={}for idx in range(len(names)):# print(idx,'names:', names[idx])# print(idx,'coco_json:','id',coco_categories[idx]['id'],'names',coco_categories[idx]['name'])predict_id_to_json_id[idx]=coco_categories[idx]['id']

 

三、创建直方图以及写入

3.1 创建直方图

https://blog.csdn.net/xjl271314/article/details/80295935

打算先用plt.hist,再用plt.savefig函数

3.2 plt.hist

https://blog.csdn.net/denny2015/article/details/50581784

n, bins, patches = plt.hist(arr, bins=10, normed=0, facecolor='black', edgecolor='black',alpha=1,histtype='bar')

hist的参数非常多,但常用的就这六个,只有第一个是必须的,后面四个可选

  • arr: 需要计算直方图的一维数组
  • bins: 直方图的柱数,可选项,默认为10
  • normed: 是否将得到的直方图向量归一化。默认为0
  • facecolor: 直方图颜色
  • edgecolor: 直方图边框颜色
  • alpha: 透明度
  • histtype: 直方图类型,‘bar’, ‘barstacked’, ‘step’, ‘stepfilled’

返回值 :

  • n: 直方图向量,是否归一化由参数normed设定
  • bins: 返回各个bin的区间范围
  • patches: 返回每个bin里面包含的数据,是一个list

3.3 创建直方图

直接根据list创建直方图即可。

    def hist_try(self):area_list=[235939.0035, 64153.92420000001, 797.3219000000005, 40377.498349999994, 825.0993000000005, 122283.17504999999, 110586.77519999997, 23235.967249999994, 7660.271999999997, 2845.3616000000015, 5078.0296, 39.01750000000018, 13050.5062, 1644.8198499999994, 9904.229450000003, 2675.0394999999994, 201191.88094999996, 41419.92445, 1120.6729999999989, 27064.562149999998, 6759.543450000003, 1151.2815999999998, 5645.972500000001, 70239.99469999998, 2468.0781500000003, 74.00769999999972, 274.57424999999995, 4085.4411499999997, 54892.3609, 20344.5, 4100.955550000003, 306.8878499999999, 598.1379500000002, 98200.96145, 1548.7608999999993, 48371.46090000002, 93.5650500000001, 996.3833999999999, 5999.726849999999, 65061.527849999984, 1343.6522999999995, 2444.3842, 20702.087949999997, 41612.6938, 8716.784449999997, 35314.11059999999, 1057.09515, 679.1063999999998, 32340.461000000007, 107332.58170000001, 564.0283000000005, 308.6485500000002, 6411.314050000004, 16892.101950000004, 2804.765700000001, 4544.119050000003, 848.3638999999996, 22555.577249999988, 704.9074499999999, 2714.924900000001, 400.17665000000056, 3047.8062999999997, 672.6902500000001, 1154.583900000002, 159.42344999999992, 2678.627699999999, 53877.39709999998, 6252.4588, 13623.237050000003, 1205.1451499999996, 3420.360850000001, 64.22899999999954, 1196.9678999999999, 5284.887600000001, 21816.5393, 40446.13375, 1009.3892000000008, 758.1965500000001, 13942.263000000003, 26605.372250000004, 1544.6851499999987, 11569.050200000003, 27346.60955, 7509.192800000006, 7443.993800000002, 187.2916000000001, 430.38455000000033, 1731.0626999999993, 22365.95915, 6107.7645999999995, 4146.846700000001, 5192.632750000001, 177.79995000000005, 2192.3364500000007, 30382.73005, 5084.077300000002, 24334.4352, 13273.328150000001, 19199.403049999997, 258.82960000000026, 171.6086499999996, 2579.294149999999, 10643.136300000002, 5276.648400000001, 130754.4461, 25967.8492, 98401.47165, 5083.535600000001, 620.5996500000009, 200.7367, 109093.38190000002, 14135.86125, 3862.85095, 1893.2924500000001, 1645.1986999999992, 3865.672500000002, 967.6888999999992, 2119.0998500000005, 1230.5245000000007, 1788.7488000000008, 693.7150500000005, 1072.0571000000002, 8818.327500000001, 1024.2146999999995, 25633.0359, 23320.623299999996, 673.1012000000009, 2222.3002000000015, 61014.46195, 1798.2479000000003, 84.1216999999999, 12116.474599999998, 4210.0095999999985, 314.3817499999999, 447.9805499999999, 228.29715000000022, 857.4145500000011, 519.8693000000002, 1650.575849999999, 5387.092499999999, 3240.4637500000003, 277831.7656500001, 6361.4247, 221.1024500000001, 15152.461450000003, 74614.90974999998, 4723.702600000005, 1759.2794500000005, 7691.003450000003, 449.2458000000002, 4290.22515, 49.50310000000002, 2441.497700000003, 95.18614999999988, 4379.470049999998, 2092.353499999998, 331.8804999999998, 3466.876549999998, 661.835500000002, 120996.0934, 629.6973000000003, 10204.53555, 3189.4067999999993, 1626.1462500000007, 311.83700000000005, 6595.661949999999, 766.3864500000003, 5832.719049999997, 622.8069000000003, 7538.644450000001, 90435.91854999997, 691.8538499999994, 19856.873300000003, 535.360100000001, 626.5313499999994, 160407.01739999998, 1773.1797999999994, 23848.098950000003, 412.3286000000004, 9071.85025, 77140.08305, 28072.59055000001, 3928.6560000000018, 928.5198500000002, 150.85995000000014, 11993.837499999998, 1933.3202499999993, 10484.912499999999, 104.0705, 2030.9136499999997, 995.7477499999995, 12849.491750000001, 2338.2236, 87.6514499999999, 24800.063850000002, 25153.20225, 1055.6573000000005, 694.9957499999987, 17828.574000000004, 76.1506500000003, 2596.9522000000006, 21308.426099999993, 3866.2829500000007, 3592.980500000001, 125.80120000000004, 296.64504999999923, 147.27640000000002, 16730.887099999993, 894.561599999999, 9031.985350000003, 2691.973500000001, 266.99935000000016, 2960.777250000001, 6210.0092, 433.22290000000044, 59792.20055, 4647.302199999999, 4789.46715, 3166.24635, 982.3338500000001, 5318.79285, 1205.97105, 30287.507150000005, 2542.6319000000003, 18771.75479999999, 988.8504000000003, 12833.495099999998, 6200.59555, 362.6848000000004, 1644.2095499999996, 4357.1161, 1328.4182000000008, 4486.79725, 40020.7544, 97421.5079, 12820.688849999999, 2030.1669000000004, 2788.8766499999983, 6761.3549, 1066.2487, 24087.15335, 466.37290000000036, 16821.8598, 149.65445000000034, 1246.0752999999997, 2882.825749999999, 26858.9004, 528.0869999999999, 19324.892450000003, 15629.004099999998, 98778.0215, 519.7051000000002, 43175.931500000006, 515.3512000000003, 1439.2336, 7132.1326, 1231.4716000000012, 486.8542000000008, 1815.2694999999983, 12663.202550000007, 59650.16855, 4806.4469500000005, 4913.544050000002, 8088.978949999999, 495.26579999999933, 11617.636250000003, 4081.1772499999997, 160451.48539999995, 16713.16865, 18227.059300000008, 26672.41565000001, 1043.1385999999998, 425.01955000000004, 130230.89709999993, 628.2395999999999, 22252.702399999995, 484.91110000000015, 210.3083500000005, 26.957550000000033, 5888.0771, 2141.0891, 220863.50235000002, 5737.141799999999, 3993.392899999999, 1562.9962500000004, 49597.06825, 128177.13039999997, 28657.39415000001, 1132.2413499999998, 26731.31054999999, 1059.2594, 4745.592499999999, 1920.1159499999983, 127.58095000000012, 12190.44565, 555.7345500000004, 9237.729949999997, 46.56134999999999, 236.1499999999998, 4298.163950000001, 216726.06719999996, 62.61789999999998, 2463.3468, 58960.8349, 5199.69665, 9304.32905, 9313.074099999998, 255.92869999999982, 69.30369999999995, 6764.494600000001, 6947.59405, 9963.741200000004, 2287.71385, 109.46640000000002, 2293.3109999999997, 16593.583899999998, 24518.62785, 355.55969999999905, 20953.521099999998, 2855.7088999999996, 3858.7823000000003, 8844.460499999997]plt.hist(area_list, bins=256, normed=0, facecolor='black', edgecolor='black', alpha=1, histtype = 'bar')plt.savefig(self.histo_img_path)

3.4 plt图像存储

plt.hist(salary, group, histtype='bar', rwidth=0.8) 
plt.legend() 
plt.xlabel('salary-group') 
plt.ylabel('salary') 
plt.title(u'测试例子——直方图', FontProperties=font)

用相应的文件,进行输入与测试。

        if not os.path.isdir(self.histo_img_dir):os.makedirs(self.histo_img_dir)area_list=[235939.0035, 64153.92420000001, 797.3219000000005, 40377.498349999994, 825.0993000000005, 122283.17504999999, 110586.77519999997, 23235.967249999994, 7660.271999999997, 2845.3616000000015, 5078.0296, 39.01750000000018, 13050.5062, 1644.8198499999994, 9904.229450000003, 2675.0394999999994, 201191.88094999996, 41419.92445, 1120.6729999999989, 27064.562149999998, 6759.543450000003, 1151.2815999999998, 5645.972500000001, 70239.99469999998, 2468.0781500000003, 74.00769999999972, 274.57424999999995, 4085.4411499999997, 54892.3609, 20344.5, 4100.955550000003, 306.8878499999999, 598.1379500000002, 98200.96145, 1548.7608999999993, 48371.46090000002, 93.5650500000001, 996.3833999999999, 5999.726849999999, 65061.527849999984, 1343.6522999999995, 2444.3842, 20702.087949999997, 41612.6938, 8716.784449999997, 35314.11059999999, 1057.09515, 679.1063999999998, 32340.461000000007, 107332.58170000001, 564.0283000000005, 308.6485500000002, 6411.314050000004, 16892.101950000004, 2804.765700000001, 4544.119050000003, 848.3638999999996, 22555.577249999988, 704.9074499999999, 2714.924900000001, 400.17665000000056, 3047.8062999999997, 672.6902500000001, 1154.583900000002, 159.42344999999992, 2678.627699999999, 53877.39709999998, 6252.4588, 13623.237050000003, 1205.1451499999996, 3420.360850000001, 64.22899999999954, 1196.9678999999999, 5284.887600000001, 21816.5393, 40446.13375, 1009.3892000000008, 758.1965500000001, 13942.263000000003, 26605.372250000004, 1544.6851499999987, 11569.050200000003, 27346.60955, 7509.192800000006, 7443.993800000002, 187.2916000000001, 430.38455000000033, 1731.0626999999993, 22365.95915, 6107.7645999999995, 4146.846700000001, 5192.632750000001, 177.79995000000005, 2192.3364500000007, 30382.73005, 5084.077300000002, 24334.4352, 13273.328150000001, 19199.403049999997, 258.82960000000026, 171.6086499999996, 2579.294149999999, 10643.136300000002, 5276.648400000001, 130754.4461, 25967.8492, 98401.47165, 5083.535600000001, 620.5996500000009, 200.7367, 109093.38190000002, 14135.86125, 3862.85095, 1893.2924500000001, 1645.1986999999992, 3865.672500000002, 967.6888999999992, 2119.0998500000005, 1230.5245000000007, 1788.7488000000008, 693.7150500000005, 1072.0571000000002, 8818.327500000001, 1024.2146999999995, 25633.0359, 23320.623299999996, 673.1012000000009, 2222.3002000000015, 61014.46195, 1798.2479000000003, 84.1216999999999, 12116.474599999998, 4210.0095999999985, 314.3817499999999, 447.9805499999999, 228.29715000000022, 857.4145500000011, 519.8693000000002, 1650.575849999999, 5387.092499999999, 3240.4637500000003, 277831.7656500001, 6361.4247, 221.1024500000001, 15152.461450000003, 74614.90974999998, 4723.702600000005, 1759.2794500000005, 7691.003450000003, 449.2458000000002, 4290.22515, 49.50310000000002, 2441.497700000003, 95.18614999999988, 4379.470049999998, 2092.353499999998, 331.8804999999998, 3466.876549999998, 661.835500000002, 120996.0934, 629.6973000000003, 10204.53555, 3189.4067999999993, 1626.1462500000007, 311.83700000000005, 6595.661949999999, 766.3864500000003, 5832.719049999997, 622.8069000000003, 7538.644450000001, 90435.91854999997, 691.8538499999994, 19856.873300000003, 535.360100000001, 626.5313499999994, 160407.01739999998, 1773.1797999999994, 23848.098950000003, 412.3286000000004, 9071.85025, 77140.08305, 28072.59055000001, 3928.6560000000018, 928.5198500000002, 150.85995000000014, 11993.837499999998, 1933.3202499999993, 10484.912499999999, 104.0705, 2030.9136499999997, 995.7477499999995, 12849.491750000001, 2338.2236, 87.6514499999999, 24800.063850000002, 25153.20225, 1055.6573000000005, 694.9957499999987, 17828.574000000004, 76.1506500000003, 2596.9522000000006, 21308.426099999993, 3866.2829500000007, 3592.980500000001, 125.80120000000004, 296.64504999999923, 147.27640000000002, 16730.887099999993, 894.561599999999, 9031.985350000003, 2691.973500000001, 266.99935000000016, 2960.777250000001, 6210.0092, 433.22290000000044, 59792.20055, 4647.302199999999, 4789.46715, 3166.24635, 982.3338500000001, 5318.79285, 1205.97105, 30287.507150000005, 2542.6319000000003, 18771.75479999999, 988.8504000000003, 12833.495099999998, 6200.59555, 362.6848000000004, 1644.2095499999996, 4357.1161, 1328.4182000000008, 4486.79725, 40020.7544, 97421.5079, 12820.688849999999, 2030.1669000000004, 2788.8766499999983, 6761.3549, 1066.2487, 24087.15335, 466.37290000000036, 16821.8598, 149.65445000000034, 1246.0752999999997, 2882.825749999999, 26858.9004, 528.0869999999999, 19324.892450000003, 15629.004099999998, 98778.0215, 519.7051000000002, 43175.931500000006, 515.3512000000003, 1439.2336, 7132.1326, 1231.4716000000012, 486.8542000000008, 1815.2694999999983, 12663.202550000007, 59650.16855, 4806.4469500000005, 4913.544050000002, 8088.978949999999, 495.26579999999933, 11617.636250000003, 4081.1772499999997, 160451.48539999995, 16713.16865, 18227.059300000008, 26672.41565000001, 1043.1385999999998, 425.01955000000004, 130230.89709999993, 628.2395999999999, 22252.702399999995, 484.91110000000015, 210.3083500000005, 26.957550000000033, 5888.0771, 2141.0891, 220863.50235000002, 5737.141799999999, 3993.392899999999, 1562.9962500000004, 49597.06825, 128177.13039999997, 28657.39415000001, 1132.2413499999998, 26731.31054999999, 1059.2594, 4745.592499999999, 1920.1159499999983, 127.58095000000012, 12190.44565, 555.7345500000004, 9237.729949999997, 46.56134999999999, 236.1499999999998, 4298.163950000001, 216726.06719999996, 62.61789999999998, 2463.3468, 58960.8349, 5199.69665, 9304.32905, 9313.074099999998, 255.92869999999982, 69.30369999999995, 6764.494600000001, 6947.59405, 9963.741200000004, 2287.71385, 109.46640000000002, 2293.3109999999997, 16593.583899999998, 24518.62785, 355.55969999999905, 20953.521099999998, 2855.7088999999996, 3858.7823000000003, 8844.460499999997]plt.hist(area_list, bins=512, normed=0, facecolor='black', edgecolor='black', alpha=1, histtype = 'bar')plt.legend()plt.xlabel('badcase size')plt.ylabel('badcase numbers')plt.title('class '+str(1)+'badcase histogram')img_name=self.histo_img_dir+'class1.jpg'plt.savefig(img_name)plt.hist(area_list, bins=10, normed=0, facecolor='black', edgecolor='black', alpha=1, histtype = 'bar')plt.legend()plt.xlabel('badcase size')plt.ylabel('badcase numbers')plt.title('class '+str(2)+'badcase histogram')img_name=self.histo_img_dir+'class2.jpg'plt.savefig(img_name)

 存储之后,务必记得删掉相应的plt.close('all'),不然生成的直方图非常类似。

3.4 直方图的值

可以print出一些大致查看一下。

[683.9160000000005, 2442.46605, 14484.758699999993, 3386.5678499999995, 14479.344549999996, 13515.022249999998, 7965.106, 5678.810250000002, 2327.091099999999, 13631.614450000001, 2796.608800000001, 34886.04705, 325.50250000000017, 34519.20375, 1698.1252500000007, 48642.866050000026, 
71689.66249999999, 1773.4906499999995, 492.9880500000001, 109111.37125000001, 1019.5727999999996, 1242.2530000000004, 4899.727649999999, 8881.890700000002, 930.5868999999998, 848.3562, 2310.67225, 603.83655, 1731.6071000000013, 24791.8876, 1082.5951500000006, 6472.634000000001, 94612.16660000001, 691.79215, 4489.496849999999, 5564.19405, 1092.7272499999997, 22771.6285, 1747.8156000000008, 1473.8869999999995, 11573.610550000003, 5180.9365, 72986.89145000002, 210.46294999999998, 3841.575599999999, 497.43615000000017, 5046.022349999997, 1744.5338500000003, 1092.3092000000001, 1286.9624500000007, 434.8083500000001, 
8087.406949999999, 1670.8321500000004, 4459.141700000001, 1989.5381500000003, 592.2093, 846.8612499999999, 389.14055000000036, 30712.36465000001, 14510.547649999999, 87553.47919999997, 16214.509000000002, 52923.730299999996, 34677.3077, 32366.462899999988, 602.9749500000005, 241.78099999999992, 
1190.1633999999995, 2205.7668000000003, 1239.5366, 1396.8755, 9500.852600000002, 20389.856850000004, 3651.285800000002, 95486.64685000003, 6979.759900000002, 8463.49585, 28137.6279, 12057.38095, 8713.739650000001, 6117.859549999999, 11247.828699999998, 4633.14075, 2064.767450000002, 964.5043000000002, 613.1057, 
1979.5362500000003, 2753.947499999998, 20320.293299999983, 3211.1752999999985, 1601.1844000000003, 55942.1499, 16455.539300000004, 23301.4676, 1834.5064000000004, 4534.887249999999, 1219.8842499999998, 1868.28045, 1552.0870000000004, 5627.17175, 
10954.283500000005, 91.5470000000001, 1237.39605, 2055.6168, 2427.7046000000005, 2742.52815, 7729.81905, 61379.4444, 2242.7182000000007, 776.7938500000002, 25998.50349999999, 11309.197699999997, 19003.994399999996, 500.52919999999864, 
553.5479500000002, 337.13875000000047, 3546.14375, 834.4200999999995, 2907.019050000001, 4721.70215, 24307.453050000004, 30627.230450000003, 64338.71099999998, 68099.72225000002, 1321.9788999999992, 4787.533700000001, 21151.617250000007, 9178.8901, 4339.022200000003, 2396.86255, 802.7199499999999,16676.49185, 1824.0607499999999, 1507.88895, 587.7183999999996, 2571.5704, 2102.1658500000003, 12234.506650000001, 772.6651500000014, 4435.3801, 5508.0989000000045, 3142.5754, 1811.7970500000013, 3051.871, 3727.1215999999986, 18412.6569, 499.1101, 19067.370849999992, 12836.944349999998, 5653.223150000002, 2481.26605, 1582.50975, 2423.39585, 15213.736899999994, 28413.067950000004, 
576.3890499999994, 201.07575000000003, 11694.643699999997, 11040.114499999998, 543.3011500000001, 44412.159199999995, 544.8582000000001, 673.0482999999999, 14934.810599999999, 4994.224450000001, 516.8612000000005, 7971.805999999999, 61756.51254999999, 522.83385, 451.03904999999986, 7023.577050000001, 
7265.986849999999, 61958.96604999999, 5680.64175, 9141.920350000002, 15217.30065, 602.6508999999999, 50731.444700000015, 3063.1288500000023, 41144.99094999999, 20797.686599999997, 867.4010000000002, 26819.547, 796.9999499999998, 10562.143299999998, 3913.147049999999]
[1724.1692499999997, 366.15034999999966, 15802.880550000003, 1225.0612, 5476.302099999996, 610.3301500000001, 429.36165000000045, 733.2061000000003, 1944.4293500000003, 22528.827299999997, 2047.4176500000003, 4414.537699999999, 47382.45214999999, 2869.1595500000008, 43092.030199999994, 1618.52535, 367.96160000000003, 5022.433500000001, 1605.3408, 346.34710000000075, 5044.8439499999995, 1321.19305, 3159.83075, 2618.5579500000026, 8377.59445, 10347.806049999994, 38315.6847, 833.8229499999998, 620.6976499999996, 
6355.030249999999, 302.02639999999985, 1520.7268499999996, 1060.9626, 8535.399400000002, 990.3860999999995, 14585.555250000005, 181.53479999999993, 2383.0066000000006, 439.6647499999999, 170.79249999999968, 54813.32545, 1833.8056500000005, 5240.37735, 5066.245699999999, 42476.40844999998, 1260.8629999999998, 336.687600000001, 1609.8348999999998, 2977.436950000002, 1205.3774499999984, 693.5048000000007, 8646.50815, 482.7517999999998, 
1578.913200000001]
[351.598449999999, 455.98845000000006, 126.78010000000019, 514.8395000000003, 406.4549999999999, 7550.0779, 84.9699000000001, 9.678950000000109, 35.56769999999989, 39.973200000000126, 394.5030499999988, 100.25860000000007, 37.878299999999896, 33.97390000000004, 248.32479999999987, 513.4488999999992, 139.4486499999998, 311.90315000000027, 428.46459999999956, 869.41345, 
243.80120000000008, 110.08284999999972, 1920.022200000001, 1054.8499499999994, 15162.020400000001, 185.6614999999997, 63.12685000000007, 224.28239999999988, 345.07704999999976, 257.955849999999, 3818.948149999999, 38.15974999999986, 2438.069849999999, 247.61110000000124, 4717.834649999999, 2854.0712999999982, 13423.968249999994, 703.90825, 32.716900000000166, 322.78010000000023, 188.23489999999902, 776.5165999999997, 706.7350999999991, 174.32570000000058, 169.27564999999984, 421.2784000000006, 40.16000000000007, 171.9341000000002, 4082.148650000001, 49.973049999999944, 2478.508799999998, 12.463999999999809, 29.90400000000009, 32.42195000000007, 2013.7202000000023, 1111.2301499999999, 951.9321500000003, 5501.7800000000025, 19054.2669, 1063.02525, 1231.7002999999972, 108.1362, 2642.0498000000016, 362.2731, 14.572200000000047, 411.22345, 150.87795000000008, 94.12419999999995, 2965.7859999999982, 99.06964999999985, 1374.7440999999978, 447.42525000000023, 73.95509999999983, 17757.11055, 13.371199999999863, 26045.760599999998, 75.52944999999983, 319.91989999999953, 690.5670500000001, 651.0274999999993, 571.9453500000006, 19.095449999999886, 
430.0609000000003, 472.3264499999994, 14.139350000000046, 3329.5093500000003, 8418.920500000004, 156.1894499999998, 4515.5091, 203.52659999999946, 182.8668000000001, 8054.924750000002, 62.799449999999986, 40.03914999999982, 15.188800000000015, 130.68259999999958, 343.4634499999999, 46.27455000000004, 180.10404999999986, 14429.936999999994, 19.00760000000006, 1212.6895999999997, 1272.8396999999989, 10439.520400000009, 4912.1141, 1462.5064, 83.44374999999991, 234.65625000000037, 54.64059999999992, 2391.116800000001, 116.79520000000005, 77.21045000000025, 1516.4389499999997, 73.30219999999991, 89.63220000000037, 136.05375000000046, 32780.061699999984, 106.98255000000017, 1452.5062499999997, 103.90935000000012, 319.4284000000001, 16.047649999999976, 6393.757299999998]

四、图片URL

4.1 标注的格式

标注之中,图片的名称的格式:

{"info": {"description": "COCO 2014 Dataset","url": "http://cocodataset.org","version": "1.0","year": 2014,"contributor": "COCO Consortium","date_created": "2017/
09/01"},"images": [{"license": 3,"file_name": "COCO_val2014_000000391895.jpg","coco_url": "http://images.cocodataset.org/val2014/COCO_val2014_000000391895.jpg","h
eight": 360,"width": 640,"date_captured": "2013-11-14 11:18:45","flickr_url": "http://farm9.staticflickr.com/8186/8119368305_4e622c8349_z.jpg","id": 391895},{"lic
ense": 4,"file_name": "COCO_val2014_000000522418.jpg","coco_url": "http://images.cocodataset.org/val2014/COCO_val2014_000000522418.jpg","height": 480,"width": 640
,"date_captured": "2013-11-14 11:38:44","flickr_url": "http://farm1.staticflickr.com/1/127244861_ab0c0381e7_z.jpg","id": 522418},{"license": 3,"file_name": "COCO_
val2014_000000184613.jpg","coco_url": "http://images.cocodataset.org/val2014/COCO_val2014_000000184613.jpg","height": 336,"width": 500,"date_captured": "2013-11-1
4 12:36:29","flickr_url": "http://farm3.staticflickr.com/2169/2118578392_1193aa04a0_z.jpg","id": 184613},{"license": 3,"file_name": "COCO_val2014_000000318219.jpg
","coco_url": "http://images.cocodataset.org/val2014/COCO_val2014_000000318219.jpg","height": 640,"width": 556,"date_captured": "2013-11-14 13:02:53","flickr_url"
: "http://farm5.staticflickr.com/4125/5094763076_813ea2751b_z.jpg","id": 318219},{"license": 3,"file_name": "COCO_val2014_000000554625.jpg","coco_url": "http://im
ages.cocodataset.org/val2014/COCO_val2014_000000554625.jpg","height": 640,"width": 426,"date_captured": "2013-11-14 16:03:19","flickr_url": "http://farm5.staticfl
ickr.com/4086/5094162993_8f59d8a473_z.jpg","id": 554625},{"license": 4,"file_name": "COCO_val2014_000000397133.jpg","coco_url": "http://images.cocodataset.org/val
2014/COCO_val2014_000000397133.jpg","height": 427,"width": 640,"date_captured": "2013-11-14 17:02:52","flickr_url": "http://farm7.staticflickr.com/6116/6255196340
_da26cf2c9e_z.jpg","id": 397133},{"license": 3,"file_name": "COCO_val2014_000000574769.jpg","coco_url": "http://images.cocodataset.org/val2014/COCO_val2014_000000
574769.jpg","height": 640,"width": 480,"date_captured": "2013-11-14 17:07:59","flickr_url": "http://farm8.staticflickr.com/7010/6728227647_3d5a0d55ee_z.jpg","id":574769},{"license": 4,"file_name": "COCO_val2014_000000060623.jpg","coco_url": "http://images.cocodataset.org/val2014/COCO_val2014_000000060623.jpg","height": 42
7,"width": 640,"date_captured": "2013-11-14 17:24:15","flickr_url": "http://farm7.staticflickr.com/6080/6113512699_37b4c98473_z.jpg","id": 60623},{"license": 2,"f
ile_name": "COCO_val2014_000000309022.jpg","coco_url": "http://images.cocodataset.org/val2014/COCO_val2014_000000309022.jpg","height": 480,"width": 640,"date_capt
ured": "2013-11-14 17:28:23","flickr_url": "http://farm4.staticflickr.com/3790/10167396295_e63f2856d0_z.jpg","id": 309022},{"license": 2,"file_name": "COCO_val201
4_000000005802.jpg","coco_url": "http://images.cocodataset.org/val2014/COCO_val2014_000000005802.jpg","height": 479,"width": 640,"date_captured": "2013-11-14 17:2
8:25","flickr_url": "http://farm4.staticflickr.com/3810/9614287841_1b724dbbc5_z.jpg","id": 5802},{"license": 2,"file_name": "COCO_val2014_000000222564.jpg","coco_
url": "http://images.cocodataset.org/val2014/COCO_val2014_000000222564.jpg","height": 480,"width": 640,"date_captured": "2013-11-14 17:30:34","flickr_url": "http:
//farm8.staticflickr.com/7390/10166966765_c96225b556_z.jpg","id": 222564},{"license": 1,"file_name": "COCO_val2014_000000118113.jpg","coco_url": "http://images.co
codataset.org/val2014/COCO_val2014_000000118113.jpg","height": 640,"width": 480,"date_captured": "2013-11-14 17:44:50","flickr_url": "http://farm8.staticflickr.co
m/7030/6555665525_b242809dc2_z.jpg","id": 118113},

4.2 添加输出badcase的URL

coco_url,之前查找img_ID的后面增加查找URL的语句。

        # loading json annotationwith open(self.area_annotation_document) as f:print('loading:', self.area_annotation_document)instances_val = json.load(f)print('loading done.')annotations_list = instances_val['annotations']images_list = instances_val['images']coco_categories = instances_val['categories']# from predict idx to json category id listpredict_idx_to_json_id = {}for idx in range(len(names)):predict_idx_to_json_id[idx] = coco_categories[idx]['id']# from image name find image iddef from_image_name_find_id_and_URL(file_name, images_list):for image_idx in range(len(images_list)):# if (image_idx%10000==0):#     print('from image_name find id:',image_idx,'/',len(images_list))if file_name == images_list[image_idx]['file_name']:img_id = images_list[image_idx]['id']coco_url=images_list[image_idx]['coco_url']breakreturn img_id,coco_url

4.3 ULR的存储

存入dict之中,

        # generate label true predict negative area list dictltrue_pnegative_catagory_area_dict={}coco_badcase_img_url_dict={}for category_idx in range(self.class_num):ltrue_pnegative_catagory_area_dict[category_idx] = []coco_badcase_img_url_dict[category_idx]=[]for idx in range(len(self.ture_negative_name_dict[category_idx])):if idx%300==0:print('category:',category_idx,'finding area:',idx,'/',len(self.ture_negative_name_dict[category_idx]))img_id,coco_url=from_image_name_find_id_and_URL(file_name=self.ture_negative_name_dict[category_idx][idx], images_list=images_list)ltrue_pnegative_catagory_area_dict[category_idx].append(from_id_and_class_find_area(img_id=img_id, class_id=category_idx, annotations_list=annotations_list))coco_badcase_img_url_dict[category_idx].append(coco_url)# save coco_url into dict and pklif not os.path.exists(self.badcase_coco_url_path):with open(self.badcase_coco_url_path, 'wb') as f:print('writing to', self.badcase_coco_url_path)pickle.dump(coco_badcase_img_url_dict, f)

4.4 本地print

生成数组随机读出相应的图片

生成一个随机数

https://www.runoob.com/python3/python3-random-number.html

random.randint(a,b) 生成a,b之间的一个随机整数

序列乱序

>>> import random
>>> a=[1,2,3,4,5]
>>> a
[1, 2, 3, 4, 5]
>>> random.shuffle(a)
>>> a
[5, 4, 2, 1, 3]

生成1到n的列表

b=list(range(100))
>>> b
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 
85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99]
"""
created by xingxiangrui on 2019.5.23
this program is to :read badcase coco url and print some of them
"""
import torch.utils.data as data
import json
import os
import subprocess
from PIL import Image
import numpy as np
import torch
import pickle
from util import *
import pandas as pd
import matplotlib.pyplot as plt
import warnings
import randomclass coco_url_print():def __init__(self):# super(self).__init__()warnings.simplefilter("ignore")self.read_and_write_dir='/Users/Desktop/code/chun_ML_GCN/badcase_analyse/cls_gat_hist/'self.url_pkl_file_name='badcase_coco_url.pkl'self.url_pkl_file_path=self.read_and_write_dir+self.url_pkl_file_nameself.output_category=24self.output_num=3# load and print coco urldef run_coco_url_print(self):# loadint fileswith open(self.url_pkl_file_path,'rb') as f:print('loading ',self.url_pkl_file_path)coco_url_dict=pickle.load(f)random_idx=list(range(len(coco_url_dict[self.output_category])))random.shuffle(random_idx)print('category:', self.output_category,'output num:',self.output_num)for output_idx in range(self.output_num):print(coco_url_dict[self.output_category][random_idx[output_idx]])print('program end...')if __name__ == '__main__':coco_url_print().run_coco_url_print()

这篇关于COCO数据集标注框的读取及badcase analyse的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/269214

相关文章

Java中注解与元数据示例详解

《Java中注解与元数据示例详解》Java注解和元数据是编程中重要的概念,用于描述程序元素的属性和用途,:本文主要介绍Java中注解与元数据的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参... 目录一、引言二、元数据的概念2.1 定义2.2 作用三、Java 注解的基础3.1 注解的定义3.2 内

将sqlserver数据迁移到mysql的详细步骤记录

《将sqlserver数据迁移到mysql的详细步骤记录》:本文主要介绍将SQLServer数据迁移到MySQL的步骤,包括导出数据、转换数据格式和导入数据,通过示例和工具说明,帮助大家顺利完成... 目录前言一、导出SQL Server 数据二、转换数据格式为mysql兼容格式三、导入数据到MySQL数据

C++中使用vector存储并遍历数据的基本步骤

《C++中使用vector存储并遍历数据的基本步骤》C++标准模板库(STL)提供了多种容器类型,包括顺序容器、关联容器、无序关联容器和容器适配器,每种容器都有其特定的用途和特性,:本文主要介绍C... 目录(1)容器及简要描述‌php顺序容器‌‌关联容器‌‌无序关联容器‌(基于哈希表):‌容器适配器‌:(

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

大数据小内存排序问题如何巧妙解决

《大数据小内存排序问题如何巧妙解决》文章介绍了大数据小内存排序的三种方法:数据库排序、分治法和位图法,数据库排序简单但速度慢,对设备要求高;分治法高效但实现复杂;位图法可读性差,但存储空间受限... 目录三种方法:方法概要数据库排序(http://www.chinasem.cn对数据库设备要求较高)分治法(常

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动