基于python的电商运动服饰销售可视化分析系统

2023-10-23 16:41

本文主要是介绍基于python的电商运动服饰销售可视化分析系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

温馨提示:文末有 CSDN 平台官方提供的学长 Wechat / QQ 名片 :)

1. 项目背景

        随着电⼦商务的蓬勃发展,⽹络服装销售已经逐渐成为消费者最为青睐的廉价购物渠道。本项目基于python网络爬虫从某电商平台抓取所有运动服饰的销售数据,分析不同品牌运动服装价格分布、主流品牌运动服装销售占比、不同标签的运动服装销售占比、男女款式运动服装销售占比等信息,多维度对比各类服装价格的高低。并利用 TensorFlow 构建深度学习模型,实现对运动服饰销售价格的建模和预测。

2. 功能组成

        基于python的电商运动服饰销售分析与预测系统的功能主要包括:

 3. 电商运动服饰销售数据爬虫

        利用 request + beautifulsoup 等工具,抓取某电商平台的运动服饰栏目的在售商品及店铺等信息:

options = Options()
options.add_argument('--headless')
options.add_argument('--disable-gpu')
chrome_driver = 'path to chromedriver'
browser = webdriver.Chrome(chrome_options=options, executable_path=chrome_driver)base_url = 'https://list.xxxxx.com/list.html?cat=1318,12102,9765&page={}&sort=sort_rank_asc&trans=1&JL=6_0_0#J_main'file_out = open('sports_wears.json', 'w', encoding='utf8')
page = 1
while page < 262:url = base_url.format(page)print('--> 抓取 {} 页:{}'.format(page, url))browser.get(url)soup = BeautifulSoup(browser.page_source, 'lxml')items = soup.find_all('li', class_='gl-item')item_infos = []for item in items:item_info = {}# 服装价格price = item.find('div', class_='p-price').i.text.strip()# 服装名称name = item.find('div', class_='p-name').a.em.text.strip()# 评论人数......# 店铺名称......item_info['comment'] = commentitem_info['shop'] = shopitem_info['tags'] = tagsprint(json.dumps(item_info, ensure_ascii=False))item_infos.append(json.dumps(item_info, ensure_ascii=False) + '\n')page += 1# 保存数据file_out.writelines(item_infos)file_out.flush()time.sleep(1.1)
browser.close()

4. 电商运动服饰销售分析与预测系统

4.1 店铺销售情况查询

        使用选择框进行店铺的选择,查询当前各店铺在售运动服装的数据,包括:服装名称、店铺名称、标签、大小型号、评论个数、价格(元):

4.2 运动服装价格分布及影响因素分析

        为了更好的统计在售运动服装价格分布和大小型号之间的关系,设定了三类图,不同型号的运动服装在售件数(扇形图)、不同大小型号的运动服装的均价分布(条形图)、电商在售运动服装价格分布情况(散点图):

         各种型号的运动服装在售件数都显示在了扇形图对应的区域中,当鼠标悬浮在相应的位置时,便会显示该型号的在售个数和占比信息,如图中显示M型号的在售个数为3901,占比25.2%。在第二张图中,显示了不同大小型号的运动服装的均价分布,当鼠标悬浮在相应的位置时,便会显示该型号的均价信息,如途中显示的SS均价在559.00元。可以看出,在0-500之间的是最多的。同时由于散点过于密集,在此图的右上角具备区域缩放、区域缩放还原、还原、下载的功能。通过图表,可以很清晰的看到在售运动服装价格分布与大小型号之间关系。

 4.3 主流品牌运动服装销售占比

        不同品牌的运动服饰,其销售价格、在售数量不同,也反应了品牌的受欢迎程度,对不同品牌运动服装销售占比就行统计分析:

 4.4 不同标签的运动服装销售占比

        对新品、放心购、闪购、赠、门店有售、厂商配送、物流、险、自营、满减、满赠等不同标签的商品就行统计分析:

4.5 男女款式运动服装销售占比

        分析性别对运动服饰销售的影响程度,对齐销售占比就行统计分析:

 4.6 基于神经网络的运动服装价格预测

        利用商品的描述文本和标签等信息,预测商品的销售价格。基于 keras 或 TensorFlow 构建双向 GRU+Dense 的神经网络模型,利用抓取的运动服装数据进行模型的训练和验证:

# 构造双向 GRU + Dense 神经网络模型
def build_model():inp = Input(shape=(maxlen,))x = Embedding(max_features, embed_size)(inp)x = Bidirectional(GRU(64, return_sequences=True))(x)x = GlobalMaxPool1D()(x)x = Dense(16, activation="relu")(x)x = Dropout(0.1)(x)x = Dense(len(all_price_levels_map), activation="softmax")(x)model = Model(inputs=inp, outputs=x)model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])return model

        模型结构如下: 

        并对商品的描述文本进行中文分词和词性标注:

# 词性标注算法
from jieba.analyse.tfidf import TFIDFclass WordSegmentPOSKeywordExtractor(TFIDF):def extract_sentence(self, sentence):......seg_words = []pos_words = []for w in words:wc = w.wordseg_words.append(wc)pos_words.append(w.flag)if len(wc.strip()) < 2 or wc.lower() in self.stop_words:continuefreq[wc] = freq.get(wc, 0.0) + 1.0return seg_words, pos_wordsextractor = WordSegmentPOSKeywordExtractor()

5. 结论

        本项目基于python网络爬虫从某电商平台抓取所有运动服饰的销售数据,分析不同品牌运动服装价格分布、主流品牌运动服装销售占比、不同标签的运动服装销售占比、男女款式运动服装销售占比等信息,多维度对比各类服装价格的高低。并利用 TensorFlow 构建深度学习模型,实现对运动服饰销售价格的建模和预测。

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码

技术交流认准下方 CSDN 官方提供的学长 Wechat / QQ 名片 :)

精彩专栏推荐订阅:

1. Python 毕设精品实战案例
2. 自然语言处理 NLP 精品实战案例
3. 计算机视觉 CV 精品实战案例

这篇关于基于python的电商运动服饰销售可视化分析系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/269104

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

JAVA智听未来一站式有声阅读平台听书系统小程序源码

智听未来,一站式有声阅读平台听书系统 🌟&nbsp;开篇:遇见未来,从“智听”开始 在这个快节奏的时代,你是否渴望在忙碌的间隙,找到一片属于自己的宁静角落?是否梦想着能随时随地,沉浸在知识的海洋,或是故事的奇幻世界里?今天,就让我带你一起探索“智听未来”——这一站式有声阅读平台听书系统,它正悄悄改变着我们的阅读方式,让未来触手可及! 📚&nbsp;第一站:海量资源,应有尽有 走进“智听

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【区块链 + 人才服务】可信教育区块链治理系统 | FISCO BCOS应用案例

伴随着区块链技术的不断完善,其在教育信息化中的应用也在持续发展。利用区块链数据共识、不可篡改的特性, 将与教育相关的数据要素在区块链上进行存证确权,在确保数据可信的前提下,促进教育的公平、透明、开放,为教育教学质量提升赋能,实现教育数据的安全共享、高等教育体系的智慧治理。 可信教育区块链治理系统的顶层治理架构由教育部、高校、企业、学生等多方角色共同参与建设、维护,支撑教育资源共享、教学质量评估、

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss