基于python的电商运动服饰销售可视化分析系统

2023-10-23 16:41

本文主要是介绍基于python的电商运动服饰销售可视化分析系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

温馨提示:文末有 CSDN 平台官方提供的学长 Wechat / QQ 名片 :)

1. 项目背景

        随着电⼦商务的蓬勃发展,⽹络服装销售已经逐渐成为消费者最为青睐的廉价购物渠道。本项目基于python网络爬虫从某电商平台抓取所有运动服饰的销售数据,分析不同品牌运动服装价格分布、主流品牌运动服装销售占比、不同标签的运动服装销售占比、男女款式运动服装销售占比等信息,多维度对比各类服装价格的高低。并利用 TensorFlow 构建深度学习模型,实现对运动服饰销售价格的建模和预测。

2. 功能组成

        基于python的电商运动服饰销售分析与预测系统的功能主要包括:

 3. 电商运动服饰销售数据爬虫

        利用 request + beautifulsoup 等工具,抓取某电商平台的运动服饰栏目的在售商品及店铺等信息:

options = Options()
options.add_argument('--headless')
options.add_argument('--disable-gpu')
chrome_driver = 'path to chromedriver'
browser = webdriver.Chrome(chrome_options=options, executable_path=chrome_driver)base_url = 'https://list.xxxxx.com/list.html?cat=1318,12102,9765&page={}&sort=sort_rank_asc&trans=1&JL=6_0_0#J_main'file_out = open('sports_wears.json', 'w', encoding='utf8')
page = 1
while page < 262:url = base_url.format(page)print('--> 抓取 {} 页:{}'.format(page, url))browser.get(url)soup = BeautifulSoup(browser.page_source, 'lxml')items = soup.find_all('li', class_='gl-item')item_infos = []for item in items:item_info = {}# 服装价格price = item.find('div', class_='p-price').i.text.strip()# 服装名称name = item.find('div', class_='p-name').a.em.text.strip()# 评论人数......# 店铺名称......item_info['comment'] = commentitem_info['shop'] = shopitem_info['tags'] = tagsprint(json.dumps(item_info, ensure_ascii=False))item_infos.append(json.dumps(item_info, ensure_ascii=False) + '\n')page += 1# 保存数据file_out.writelines(item_infos)file_out.flush()time.sleep(1.1)
browser.close()

4. 电商运动服饰销售分析与预测系统

4.1 店铺销售情况查询

        使用选择框进行店铺的选择,查询当前各店铺在售运动服装的数据,包括:服装名称、店铺名称、标签、大小型号、评论个数、价格(元):

4.2 运动服装价格分布及影响因素分析

        为了更好的统计在售运动服装价格分布和大小型号之间的关系,设定了三类图,不同型号的运动服装在售件数(扇形图)、不同大小型号的运动服装的均价分布(条形图)、电商在售运动服装价格分布情况(散点图):

         各种型号的运动服装在售件数都显示在了扇形图对应的区域中,当鼠标悬浮在相应的位置时,便会显示该型号的在售个数和占比信息,如图中显示M型号的在售个数为3901,占比25.2%。在第二张图中,显示了不同大小型号的运动服装的均价分布,当鼠标悬浮在相应的位置时,便会显示该型号的均价信息,如途中显示的SS均价在559.00元。可以看出,在0-500之间的是最多的。同时由于散点过于密集,在此图的右上角具备区域缩放、区域缩放还原、还原、下载的功能。通过图表,可以很清晰的看到在售运动服装价格分布与大小型号之间关系。

 4.3 主流品牌运动服装销售占比

        不同品牌的运动服饰,其销售价格、在售数量不同,也反应了品牌的受欢迎程度,对不同品牌运动服装销售占比就行统计分析:

 4.4 不同标签的运动服装销售占比

        对新品、放心购、闪购、赠、门店有售、厂商配送、物流、险、自营、满减、满赠等不同标签的商品就行统计分析:

4.5 男女款式运动服装销售占比

        分析性别对运动服饰销售的影响程度,对齐销售占比就行统计分析:

 4.6 基于神经网络的运动服装价格预测

        利用商品的描述文本和标签等信息,预测商品的销售价格。基于 keras 或 TensorFlow 构建双向 GRU+Dense 的神经网络模型,利用抓取的运动服装数据进行模型的训练和验证:

# 构造双向 GRU + Dense 神经网络模型
def build_model():inp = Input(shape=(maxlen,))x = Embedding(max_features, embed_size)(inp)x = Bidirectional(GRU(64, return_sequences=True))(x)x = GlobalMaxPool1D()(x)x = Dense(16, activation="relu")(x)x = Dropout(0.1)(x)x = Dense(len(all_price_levels_map), activation="softmax")(x)model = Model(inputs=inp, outputs=x)model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])return model

        模型结构如下: 

        并对商品的描述文本进行中文分词和词性标注:

# 词性标注算法
from jieba.analyse.tfidf import TFIDFclass WordSegmentPOSKeywordExtractor(TFIDF):def extract_sentence(self, sentence):......seg_words = []pos_words = []for w in words:wc = w.wordseg_words.append(wc)pos_words.append(w.flag)if len(wc.strip()) < 2 or wc.lower() in self.stop_words:continuefreq[wc] = freq.get(wc, 0.0) + 1.0return seg_words, pos_wordsextractor = WordSegmentPOSKeywordExtractor()

5. 结论

        本项目基于python网络爬虫从某电商平台抓取所有运动服饰的销售数据,分析不同品牌运动服装价格分布、主流品牌运动服装销售占比、不同标签的运动服装销售占比、男女款式运动服装销售占比等信息,多维度对比各类服装价格的高低。并利用 TensorFlow 构建深度学习模型,实现对运动服饰销售价格的建模和预测。

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码

技术交流认准下方 CSDN 官方提供的学长 Wechat / QQ 名片 :)

精彩专栏推荐订阅:

1. Python 毕设精品实战案例
2. 自然语言处理 NLP 精品实战案例
3. 计算机视觉 CV 精品实战案例

这篇关于基于python的电商运动服饰销售可视化分析系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/269104

相关文章

Python数据验证神器Pydantic库的使用和实践中的避坑指南

《Python数据验证神器Pydantic库的使用和实践中的避坑指南》Pydantic是一个用于数据验证和设置的库,可以显著简化API接口开发,文章通过一个实际案例,展示了Pydantic如何在生产环... 目录1️⃣ 崩溃时刻:当你的API接口又双叒崩了!2️⃣ 神兵天降:3行代码解决验证难题3️⃣ 深度

Python+FFmpeg实现视频自动化处理的完整指南

《Python+FFmpeg实现视频自动化处理的完整指南》本文总结了一套在Python中使用subprocess.run调用FFmpeg进行视频自动化处理的解决方案,涵盖了跨平台硬件加速、中间素材处理... 目录一、 跨平台硬件加速:统一接口设计1. 核心映射逻辑2. python 实现代码二、 中间素材处

python中的flask_sqlalchemy的使用及示例详解

《python中的flask_sqlalchemy的使用及示例详解》文章主要介绍了在使用SQLAlchemy创建模型实例时,通过元类动态创建实例的方式,并说明了如何在实例化时执行__init__方法,... 目录@orm.reconstructorSQLAlchemy的回滚关联其他模型数据库基本操作将数据添

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

Python实现快速扫描目标主机的开放端口和服务

《Python实现快速扫描目标主机的开放端口和服务》这篇文章主要为大家详细介绍了如何使用Python编写一个功能强大的端口扫描器脚本,实现快速扫描目标主机的开放端口和服务,感兴趣的小伙伴可以了解下... 目录功能介绍场景应用1. 网络安全审计2. 系统管理维护3. 网络故障排查4. 合规性检查报错处理1.

Python轻松实现Word到Markdown的转换

《Python轻松实现Word到Markdown的转换》在文档管理、内容发布等场景中,将Word转换为Markdown格式是常见需求,本文将介绍如何使用FreeSpire.DocforPython实现... 目录一、工具简介二、核心转换实现1. 基础单文件转换2. 批量转换Word文件三、工具特性分析优点局

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp

C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解

《C++,C#,Rust,Go,Java,Python,JavaScript的性能对比全面讲解》:本文主要介绍C++,C#,Rust,Go,Java,Python,JavaScript性能对比全面... 目录编程语言性能对比、核心优势与最佳使用场景性能对比表格C++C#RustGoJavapythonjav

Python海象运算符:=的具体实现

《Python海象运算符:=的具体实现》海象运算符又称​​赋值表达式,Python3.8后可用,其核心设计是在表达式内部完成变量赋值并返回该值,从而简化代码逻辑,下面就来详细的介绍一下如何使用,感兴趣... 目录简介​​条件判断优化循环控制简化​推导式高效计算​正则匹配与数据提取​性能对比简介海象运算符

python项目环境切换的几种实现方式

《python项目环境切换的几种实现方式》本文主要介绍了python项目环境切换的几种实现方式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 如何在不同python项目中,安装不同的依赖2. 如何切换到不同项目的工作空间3.创建项目