伽马函数:将阶乘函数扩展到正整数之外

2023-10-23 10:28

本文主要是介绍伽马函数:将阶乘函数扩展到正整数之外,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、说明

        ,是对阶乘这种运算的实数域拓展。属于高级的数学模型,在高级概率模型用于定义分布函数。本文将介绍这个函数的基础概念和属性。

二、gamma函数定义

        众所周知,阶乘这个运算本来是用于简化形如 n(n−1)(n−2)…3×2×1 的乘积的,但是经过几百年的发展,这个运算拓展到了复数域的,并拥有了新的名字——Gamma函数

        Gamma函数有很多定义,其中我们今天就来尝试从它的积分定义中推出其它定义:

三、Gamma函数与阶乘的关系

        倘若我们对这个函数分部积分,我们可以得到Gamma函数之间的关系:

        如果我们令z=1,则

        结合第一个结论,对于 z\in \mathbb{R}_{+}  ,存在:

于是我们得到Gamma函数与阶乘的联系 Γ(n)=(n−1)!


      

四、证明伽玛函数是阶乘的扩展

        为了做到这一点,我们需要证明方程 Γ(n) = (n - 1)!对于定义阶乘函数的所有 n 的正整数都成立。由于不可能检查每个值,我们可以利用数学归纳原理一次检查所有值。

        归纳证明的第一步是建立我们希望证明的命题:

        现在,我们需要证明我们的基本情况成立,即当 n = 1 时。将其代入 gamma 函数的表达式中并计算:

        因此,基本情况 P(1) 为真。

        归纳证明的下一步是归纳步骤,我们希望证明如果 P(k) 对某个正整数 k 成立,那么 P(+ 1) 也成立。为此,我们可以首先假设 P(k): Γ(k) = (k - 1)!是真的。考虑到这一点,我们可以尝试求解 Γ(k +1):

        这个积分要求我们通过让u = t^kdv = exp(-tdt来使用部分积分。这给出了以下内容:

        在倒数第二行中,我使用了我们的假设,即该命题适用于 P(k)。因此,我们刚刚证明,如果 P(k) 成立,那么 P(+ 1) 也会成立,并且由于我们的基本情况 P(1) 为真,根据数学归纳原理,任何正整数 n 的 P(n) 都必须为真。这表明,在正整数上,gamma 函数的行为确实与阶乘函数完全相同,如果我们考虑正整数以外的其他值,则可以证明它是阶乘的扩展。事实上,我们可以尝试使用 gamma 函数来尝试评估阶乘,例如 (1/2)!正如我将在下一节中介绍的那样。

五、计算(1/2)!

        现在,在继续之前,重要的是要清楚,我们现在使用阶乘的 gamma 函数定义来评估这一点,因为原始定义没有很好地定义非整数值,例如 1/2。考虑到这一点,我们可以将 3/2 代入 gamma 函数来计算 1/2 的阶乘:

        在第三步中,我利用了我们在归纳证明中展示的 Γ(k+1) = k Γ(k) 的事实。现在,右边的积分一开始肯定不明显,但我们可以通过使用 x = t^(1/2) 的代入将其转换为更熟悉的积分,得到 t = x² 和 dt = 2 t^(1/2)dx。将这两者代入,我们得到以下结果:

        最后一个积分是著名的积分的形式,称为高斯积分,可以通过将积分转换为极坐标中的双积分来解决。如果您不熟悉这一点,我在这篇文章中介绍了解决高斯积分的方法,所以我建议您检查一下。现在,由于从 -∞ 到 ∞ 的这个积分的解是π的平方根,因此从 0 到 ∞ 的积分必须是这个积分的一半,因为它是一个偶数函数。因此,我们可以得出以下结论:

        由于π在解决方案中,这当然是一个有趣且意想不到的结果。但是,重要的是要认识到这不是我们通常定义的阶乘,并且这仅在我们使用了扩展的伽马函数定义时才有效。此外,虽然我只研究了这个非整数有理数的例子,但 gamma 函数也是在所有复数值上定义的,其实部大于 0。事实上,我们实际上也可以使用一种称为复分析延续的技术,将域扩展到具有非正实部的(大多数)复数。如果您对这些进一步的扩展感到好奇,我绝对建议您在线对其进行进一步研究。感谢您的阅读。

六、gamma函数的python作图

########################
# f(x) = exp(-x) graph #
########################
import matplotlib.pyplot as plt
import numpy as np
# Create x and y
x = np.linspace(-2, 20, 100)
y = np.exp(-x)
# Create the plot
fig, ax = plt.subplots()
plt.plot(x, y, label='f(x) = exp(-x)', linewidth=3, color='palegreen')
# Make the x=0, y=0 thicker
ax.set_aspect('equal')
ax.grid(True, which='both')
ax.axhline(y=0, color='k')
ax.axvline(x=0, color='k')
# Add a title
plt.title('f(x) = exp(-x)', fontsize=20)
# Add X and y Label
plt.xlabel('x', fontsize=16)
plt.ylabel('f(x)', fontsize=16)
# Add a grid
plt.grid(alpha=.4, linestyle='--')
# Show the plot
plt.show()
####################
# f(x) = x^z graph #
####################
import matplotlib.pyplot as plt
import numpy as np
# Create x and y
x = np.linspace(0, 2, 100)
y1 = x**1.3
y2 = x**2.5 
y3 = x**3.8
# Create the plot
fig, ax = plt.subplots()
plt.plot(x, y1, label='f(x) = x^1.3', linewidth=3, color='palegreen')
plt.plot(x, y2, label='f(x) = x^2.5', linewidth=3, color='yellowgreen')
plt.plot(x, y3, label='f(x) = x^3.8', linewidth=3, color='olivedrab')
# Make the x=0, y=0 thicker
ax.set_aspect('equal')
ax.grid(True, which='both')
ax.axhline(y=0, color='k')
ax.axvline(x=0, color='k')
# Add a title
plt.title('f(x) = x^z', fontsize=20)
# Add X and y Label
plt.xlabel('x', fontsize=16)
plt.ylabel('f(x)', fontsize=16)
# Add a grid
plt.grid(alpha=.4, linestyle='--')
# Add a Legend
plt.legend(bbox_to_anchor=(1, 1), loc='best', borderaxespad=1, fontsize=12)
# Show the plot
plt.show()
###############################
# f(x) = x^(3.8)*e^(-x) graph #
###############################
import matplotlib.pyplot as plt
import numpy as np
# Create x and y
x = np.linspace(0, 20, 100)
y = x**3.8 * np.exp(-x)
# Create the plot
fig, ax = plt.subplots()
plt.plot(x, y, label='f(x) = x^(3.8) * np.exp(-x)', linewidth=3, color='palegreen')
ax.fill_between(x, 0, y, color='yellowgreen')
# Make the x=0, y=0 thicker
ax.set_aspect('equal')
ax.grid(True, which='both')
ax.axhline(y=0, color='k')
ax.axvline(x=0, color='k')
# Add a title
plt.title('f(x) =  x^(3.8)*e^(-x) ', fontsize=20)
# Add X and y Label
plt.xlabel('x', fontsize=16)
plt.ylabel('f(x)' ,fontsize=16)
# Add a grid
plt.grid(alpha=.4, linestyle='--')
# Add a Legend
plt.legend(bbox_to_anchor=(1, 1), loc='upper right', borderaxespad=1, fontsize=12)
# Show the plot
plt.show()

结果如下:

这篇关于伽马函数:将阶乘函数扩展到正整数之外的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/267246

相关文章

Python实现阶乘的四种写法

《Python实现阶乘的四种写法》本文主要介绍了Python实现阶乘的六种写法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录第一种:推导式+循环遍历列表内每个元素相乘第二种:调用functools模块reduce的php累计

Oracle的to_date()函数详解

《Oracle的to_date()函数详解》Oracle的to_date()函数用于日期格式转换,需要注意Oracle中不区分大小写的MM和mm格式代码,应使用mi代替分钟,此外,Oracle还支持毫... 目录oracle的to_date()函数一.在使用Oracle的to_date函数来做日期转换二.日

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

科研绘图系列:R语言扩展物种堆积图(Extended Stacked Barplot)

介绍 R语言的扩展物种堆积图是一种数据可视化工具,它不仅展示了物种的堆积结果,还整合了不同样本分组之间的差异性分析结果。这种图形表示方法能够直观地比较不同物种在各个分组中的显著性差异,为研究者提供了一种有效的数据解读方式。 加载R包 knitr::opts_chunk$set(warning = F, message = F)library(tidyverse)library(phyl

uva 10061 How many zero's and how many digits ?(不同进制阶乘末尾几个0)+poj 1401

题意是求在base进制下的 n!的结果有几位数,末尾有几个0。 想起刚开始的时候做的一道10进制下的n阶乘末尾有几个零,以及之前有做过的一道n阶乘的位数。 当时都是在10进制下的。 10进制下的做法是: 1. n阶位数:直接 lg(n!)就是得数的位数。 2. n阶末尾0的个数:由于2 * 5 将会在得数中以0的形式存在,所以计算2或者计算5,由于因子中出现5必然出现2,所以直接一

Spring框架5 - 容器的扩展功能 (ApplicationContext)

private static ApplicationContext applicationContext;static {applicationContext = new ClassPathXmlApplicationContext("bean.xml");} BeanFactory的功能扩展类ApplicationContext进行深度的分析。ApplicationConext与 BeanF

C++操作符重载实例(独立函数)

C++操作符重载实例,我们把坐标值CVector的加法进行重载,计算c3=c1+c2时,也就是计算x3=x1+x2,y3=y1+y2,今天我们以独立函数的方式重载操作符+(加号),以下是C++代码: c1802.cpp源代码: D:\YcjWork\CppTour>vim c1802.cpp #include <iostream>using namespace std;/*** 以独立函数

函数式编程思想

我们经常会用到各种各样的编程思想,例如面向过程、面向对象。不过笔者在该博客简单介绍一下函数式编程思想. 如果对函数式编程思想进行概括,就是f(x) = na(x) , y=uf(x)…至于其他的编程思想,可能是y=a(x)+b(x)+c(x)…,也有可能是y=f(x)=f(x)/a + f(x)/b+f(x)/c… 面向过程的指令式编程 面向过程,简单理解就是y=a(x)+b(x)+c(x)