伽马函数:将阶乘函数扩展到正整数之外

2023-10-23 10:28

本文主要是介绍伽马函数:将阶乘函数扩展到正整数之外,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、说明

        ,是对阶乘这种运算的实数域拓展。属于高级的数学模型,在高级概率模型用于定义分布函数。本文将介绍这个函数的基础概念和属性。

二、gamma函数定义

        众所周知,阶乘这个运算本来是用于简化形如 n(n−1)(n−2)…3×2×1 的乘积的,但是经过几百年的发展,这个运算拓展到了复数域的,并拥有了新的名字——Gamma函数

        Gamma函数有很多定义,其中我们今天就来尝试从它的积分定义中推出其它定义:

三、Gamma函数与阶乘的关系

        倘若我们对这个函数分部积分,我们可以得到Gamma函数之间的关系:

        如果我们令z=1,则

        结合第一个结论,对于 z\in \mathbb{R}_{+}  ,存在:

于是我们得到Gamma函数与阶乘的联系 Γ(n)=(n−1)!


      

四、证明伽玛函数是阶乘的扩展

        为了做到这一点,我们需要证明方程 Γ(n) = (n - 1)!对于定义阶乘函数的所有 n 的正整数都成立。由于不可能检查每个值,我们可以利用数学归纳原理一次检查所有值。

        归纳证明的第一步是建立我们希望证明的命题:

        现在,我们需要证明我们的基本情况成立,即当 n = 1 时。将其代入 gamma 函数的表达式中并计算:

        因此,基本情况 P(1) 为真。

        归纳证明的下一步是归纳步骤,我们希望证明如果 P(k) 对某个正整数 k 成立,那么 P(+ 1) 也成立。为此,我们可以首先假设 P(k): Γ(k) = (k - 1)!是真的。考虑到这一点,我们可以尝试求解 Γ(k +1):

        这个积分要求我们通过让u = t^kdv = exp(-tdt来使用部分积分。这给出了以下内容:

        在倒数第二行中,我使用了我们的假设,即该命题适用于 P(k)。因此,我们刚刚证明,如果 P(k) 成立,那么 P(+ 1) 也会成立,并且由于我们的基本情况 P(1) 为真,根据数学归纳原理,任何正整数 n 的 P(n) 都必须为真。这表明,在正整数上,gamma 函数的行为确实与阶乘函数完全相同,如果我们考虑正整数以外的其他值,则可以证明它是阶乘的扩展。事实上,我们可以尝试使用 gamma 函数来尝试评估阶乘,例如 (1/2)!正如我将在下一节中介绍的那样。

五、计算(1/2)!

        现在,在继续之前,重要的是要清楚,我们现在使用阶乘的 gamma 函数定义来评估这一点,因为原始定义没有很好地定义非整数值,例如 1/2。考虑到这一点,我们可以将 3/2 代入 gamma 函数来计算 1/2 的阶乘:

        在第三步中,我利用了我们在归纳证明中展示的 Γ(k+1) = k Γ(k) 的事实。现在,右边的积分一开始肯定不明显,但我们可以通过使用 x = t^(1/2) 的代入将其转换为更熟悉的积分,得到 t = x² 和 dt = 2 t^(1/2)dx。将这两者代入,我们得到以下结果:

        最后一个积分是著名的积分的形式,称为高斯积分,可以通过将积分转换为极坐标中的双积分来解决。如果您不熟悉这一点,我在这篇文章中介绍了解决高斯积分的方法,所以我建议您检查一下。现在,由于从 -∞ 到 ∞ 的这个积分的解是π的平方根,因此从 0 到 ∞ 的积分必须是这个积分的一半,因为它是一个偶数函数。因此,我们可以得出以下结论:

        由于π在解决方案中,这当然是一个有趣且意想不到的结果。但是,重要的是要认识到这不是我们通常定义的阶乘,并且这仅在我们使用了扩展的伽马函数定义时才有效。此外,虽然我只研究了这个非整数有理数的例子,但 gamma 函数也是在所有复数值上定义的,其实部大于 0。事实上,我们实际上也可以使用一种称为复分析延续的技术,将域扩展到具有非正实部的(大多数)复数。如果您对这些进一步的扩展感到好奇,我绝对建议您在线对其进行进一步研究。感谢您的阅读。

六、gamma函数的python作图

########################
# f(x) = exp(-x) graph #
########################
import matplotlib.pyplot as plt
import numpy as np
# Create x and y
x = np.linspace(-2, 20, 100)
y = np.exp(-x)
# Create the plot
fig, ax = plt.subplots()
plt.plot(x, y, label='f(x) = exp(-x)', linewidth=3, color='palegreen')
# Make the x=0, y=0 thicker
ax.set_aspect('equal')
ax.grid(True, which='both')
ax.axhline(y=0, color='k')
ax.axvline(x=0, color='k')
# Add a title
plt.title('f(x) = exp(-x)', fontsize=20)
# Add X and y Label
plt.xlabel('x', fontsize=16)
plt.ylabel('f(x)', fontsize=16)
# Add a grid
plt.grid(alpha=.4, linestyle='--')
# Show the plot
plt.show()
####################
# f(x) = x^z graph #
####################
import matplotlib.pyplot as plt
import numpy as np
# Create x and y
x = np.linspace(0, 2, 100)
y1 = x**1.3
y2 = x**2.5 
y3 = x**3.8
# Create the plot
fig, ax = plt.subplots()
plt.plot(x, y1, label='f(x) = x^1.3', linewidth=3, color='palegreen')
plt.plot(x, y2, label='f(x) = x^2.5', linewidth=3, color='yellowgreen')
plt.plot(x, y3, label='f(x) = x^3.8', linewidth=3, color='olivedrab')
# Make the x=0, y=0 thicker
ax.set_aspect('equal')
ax.grid(True, which='both')
ax.axhline(y=0, color='k')
ax.axvline(x=0, color='k')
# Add a title
plt.title('f(x) = x^z', fontsize=20)
# Add X and y Label
plt.xlabel('x', fontsize=16)
plt.ylabel('f(x)', fontsize=16)
# Add a grid
plt.grid(alpha=.4, linestyle='--')
# Add a Legend
plt.legend(bbox_to_anchor=(1, 1), loc='best', borderaxespad=1, fontsize=12)
# Show the plot
plt.show()
###############################
# f(x) = x^(3.8)*e^(-x) graph #
###############################
import matplotlib.pyplot as plt
import numpy as np
# Create x and y
x = np.linspace(0, 20, 100)
y = x**3.8 * np.exp(-x)
# Create the plot
fig, ax = plt.subplots()
plt.plot(x, y, label='f(x) = x^(3.8) * np.exp(-x)', linewidth=3, color='palegreen')
ax.fill_between(x, 0, y, color='yellowgreen')
# Make the x=0, y=0 thicker
ax.set_aspect('equal')
ax.grid(True, which='both')
ax.axhline(y=0, color='k')
ax.axvline(x=0, color='k')
# Add a title
plt.title('f(x) =  x^(3.8)*e^(-x) ', fontsize=20)
# Add X and y Label
plt.xlabel('x', fontsize=16)
plt.ylabel('f(x)' ,fontsize=16)
# Add a grid
plt.grid(alpha=.4, linestyle='--')
# Add a Legend
plt.legend(bbox_to_anchor=(1, 1), loc='upper right', borderaxespad=1, fontsize=12)
# Show the plot
plt.show()

结果如下:

这篇关于伽马函数:将阶乘函数扩展到正整数之外的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/267246

相关文章

PostgreSQL的扩展dict_int应用案例解析

《PostgreSQL的扩展dict_int应用案例解析》dict_int扩展为PostgreSQL提供了专业的整数文本处理能力,特别适合需要精确处理数字内容的搜索场景,本文给大家介绍PostgreS... 目录PostgreSQL的扩展dict_int一、扩展概述二、核心功能三、安装与启用四、字典配置方法

MySQL 中的 CAST 函数详解及常见用法

《MySQL中的CAST函数详解及常见用法》CAST函数是MySQL中用于数据类型转换的重要函数,它允许你将一个值从一种数据类型转换为另一种数据类型,本文给大家介绍MySQL中的CAST... 目录mysql 中的 CAST 函数详解一、基本语法二、支持的数据类型三、常见用法示例1. 字符串转数字2. 数字

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

MySQL count()聚合函数详解

《MySQLcount()聚合函数详解》MySQL中的COUNT()函数,它是SQL中最常用的聚合函数之一,用于计算表中符合特定条件的行数,本文给大家介绍MySQLcount()聚合函数,感兴趣的朋... 目录核心功能语法形式重要特性与行为如何选择使用哪种形式?总结深入剖析一下 mysql 中的 COUNT

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Python get()函数用法案例详解

《Pythonget()函数用法案例详解》在Python中,get()是字典(dict)类型的内置方法,用于安全地获取字典中指定键对应的值,它的核心作用是避免因访问不存在的键而引发KeyError错... 目录简介基本语法一、用法二、案例:安全访问未知键三、案例:配置参数默认值简介python是一种高级编

python 常见数学公式函数使用详解(最新推荐)

《python常见数学公式函数使用详解(最新推荐)》文章介绍了Python的数学计算工具,涵盖内置函数、math/cmath标准库及numpy/scipy/sympy第三方库,支持从基础算术到复杂数... 目录python 数学公式与函数大全1. 基本数学运算1.1 算术运算1.2 分数与小数2. 数学函数

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(