【数值分析】2 - 插值法

2023-10-23 03:52
文章标签 分析 插值法 数值

本文主要是介绍【数值分析】2 - 插值法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、引言
    • 1.1 插值法引入
    • 1.2 常用插值法
    • 1.3 插值法定义
  • 二、插值法研究的问题
    • 2.1 插值多项式存在的唯一性
    • 2.2 如何构造n次多项式
      • 2.2.1 待定系数法
      • 2.2.2 拉格朗日插值法
        • 2.2.2.1 拉格朗日多项式
        • 2.2.2.2 拉格朗日插值余项
        • 2.2.2.3 例题
        • 2.2.2.4 拉格朗日插值法的问题
      • 2.2.3 牛顿插值法
        • 2.2.3.1 牛顿插值思想
        • 2.2.3.2 差商的定义
        • 2.2.3.3 差商的性质
        • 2.2.3.4 差商表
        • 2.2.3.5 牛顿插值公式
        • 2.2.3.6 牛顿插值余项
        • 2.2.3.7 等距节点公式
        • 2.2.3.8 例题


学习视频:《数值分析》| 华科 | 研究生基础课


一、引言

1.1 插值法引入

许多实际问题都用函数 y = f ( x ) y=f(x) y=f(x) 来表示某种内在规律的数量关系,其中相当一部分函数是通过实验或计算得到的,并且只是 [ a , b ] [a,b] [a,b] 上一系列点 x i x_i xi 的函数值 { f ( x i ) ∣ i = 0 , 1 , . . . , n } \{f(x_i)\ |\ i=0,1,...,n\} {f(xi)  i=0,1,...,n},这只是一张函数表。

有的问题虽然也有解析表达式,但由于计算复杂,使用不方便,通常也要构造一个函数表,如三角函数表、对数表、立方根表、平方根表等。

然而,为了研究函数的变化规律,往往需要知道不在函数表上的函数值,因此,我们希望根据给定的函数表做一个既可以反映函数 f ( x ) f(x) f(x) 的特性,又便于计算的简单函数 p ( x ) p(x) p(x),用 p ( x ) p(x) p(x) 近似 f ( x ) f(x) f(x)插值法就是根据函数表寻找简单函数 p ( x ) p(x) p(x) 的方法之一

寻找简单函数的问题又被称为函数逼近问题,下面给出了一个函数逼近问题的示例:

在这里插入图片描述

那么,什么样的函数是简单函数呢?

通常,我们用代数多项式或分段代数多项式作为简单函数 p ( x ) p(x) p(x),并使得 p ( x i ) = f ( x i ) p(x_i)=f(x_i) p(xi)=f(xi) 对所有的 x i , i = 0 , 1 , . . . , n x_i,i=0,1,...,n xi,i=0,1,...,n 成立。

1.2 常用插值法

  • 多项式插值 p ( x ) p(x) p(x) 为多项式函数(最常用)
  • 分段插值 p ( x ) p(x) p(x) 为分段多项式函数
  • 三角插值 p ( x ) p(x) p(x) 为三角函数

1.3 插值法定义

在这里插入图片描述
在这里插入图片描述

二、插值法研究的问题

  • 满足插值条件的 p ( x ) p(x) p(x) 是否存在且唯一?
  • 如满足插值条件的 p ( x ) p(x) p(x) 存在,如何构造 p ( x ) p(x) p(x)
  • 如何估计用 p ( x ) p(x) p(x) 近似替代 f ( x ) f(x) f(x) 产生的误差?

2.1 插值多项式存在的唯一性

在这里插入图片描述
在这里插入图片描述

因此,通过上述的证明,可以得到如下定理:

在这里插入图片描述

2.2 如何构造n次多项式

2.2.1 待定系数法

在这里插入图片描述

下面还有一种更加简洁的解法:

在这里插入图片描述

2.2.2 拉格朗日插值法

2.2.2.1 拉格朗日多项式

前面介绍的待定系数法中,使用的基函数是 1 , x , x 2 , . . . , x n 1,x,x^2,...,x^n 1,x,x2,...,xn,这样的基函数过于简单,导致求解系数时较为麻烦。因此,有了下面将要介绍的拉格朗日插值法,它使用了更为复杂的拉格朗日基函数

在这里插入图片描述

考虑 n = 1 n=1 n=1 的特殊情况:

在这里插入图片描述

由上可知:

l 0 ( x 0 ) = 1 , l 0 ( x 1 ) = 0 , l 1 ( x 0 ) = 0 , l 1 ( x 1 ) = 1. l_0(x_0)=1,l_0(x_1)=0, \\ l_1(x_0)=0,l_1(x_1)=1. l0(x0)=1,l0(x1)=0,l1(x0)=0,l1(x1)=1.

可以给出如下的克罗内克Delta函数

δ i j = { 1 , i = j 0 , i ≠ j \delta_{ij}=\begin{cases} 1 , i=j \\ 0 , i \neq j \end{cases} δij={1,i=j0,i=j

且满足条件 l i ( x j ) = δ i j l_i(x_j)=\delta_{ij} li(xj)=δij

更一般地,下面我们进一步讨论 n ≥ 1 n\ge1 n1 的情况:

在这里插入图片描述

从拉格朗日基函数公式我们可以看出,它仅仅与节点 x x x 有关,而与真实的函数形式 f ( x ) f(x) f(x) 无关,这意味着给定不同的函数和相同的插值节点,求出来的拉格朗日基函数是一样的。

另外,容易得到 ∑ i l i ( x ) = 1 \sum_{i}{l_i(x)=1} ili(x)=1(特别地, f ( x ) = 1 f(x)=1 f(x)=1

在这里插入图片描述

2.2.2.2 拉格朗日插值余项

假设节点 x i ∈ [ a , b ] , i = 0 , 1 , . . . , n x_i\in[a,b],i=0,1,...,n xi[a,b],i=0,1,...,n,且 f ( x ) f(x) f(x) 满足条件 f ( x ) ∈ C n [ a , b ] f(x)\in C^n[a,b] f(x)Cn[a,b] f ( n + 1 ) ( x ) f^{(n+1)}(x) f(n+1)(x) [ a , b ] [a,b] [a,b] 内存在,考虑截断误差 R n ( x ) = L n ( x ) − f ( x ) R_n(x)=L_n(x) - f(x) Rn(x)=Ln(x)f(x)

由插值条件可知, R n ( x ) R_n(x) Rn(x) 至少存在 n + 1 n+1 n+1 个零点(因为在每个插值点处, R n R_n Rn 必然为零),因此,可以将 R n ( x ) R_n(x) Rn(x) 表示为:

R n ( x ) = K ( x ) ∏ i = 0 n ( x − x i ) R_n(x)=K(x)\prod_{i=0}^{n}{(x-x_i)} Rn(x)=K(x)i=0n(xxi)

其中, K ( x ) K(x) K(x) 是一个待确定的函数。

考虑任意一个非插值节点 x ≠ x i ( i = 0 , 1 , . . . , n ) x\neq x_i(i=0,1,...,n) x=xi(i=0,1,...,n),设辅助函数:
g ( t ) = R n ( t ) − K ( x ) ∏ i = 0 n ( t − x i ) g(t)=R_n(t)-K(x)\prod_{i=0}^{n}{(t-x_i)} g(t)=Rn(t)K(x)i=0n(txi)

容易得到, g ( t ) g(t) g(t) 至少有 n + 2 n+2 n+2 个零点( x x x x 0 , x 1 , . . . , x n x_0,x_1,...,x_n x0,x1,...,xn

根据罗尔定理的推广可得,在区间 [ a , b ] [a,b] [a,b] 内至少存在一点 ξ x \xi_x ξx ,使得辅助函数的 n + 1 n+1 n+1 阶导函数为零,即 g ( n + 1 ) ( ξ x ) = 0 g^{(n+1)}(\xi_x)=0 g(n+1)(ξx)=0,从而可以推导出:
R n ( n + 1 ) ( ξ x ) − K ( x ) ( n + 1 ) ! = 0 R_n^{(n+1)}(\xi_x)-K(x)(n+1)!=0 Rn(n+1)(ξx)K(x)(n+1)!=0

从而有:

f ( n + 1 ) ( ξ x ) − L n ( n + 1 ) ( ξ x ) − K ( x ) ( n + 1 ) ! = 0 f^{(n+1)}(\xi_x)-L_n^{(n+1)}(\xi_x)-K(x)(n+1)!=0 f(n+1)(ξx)Ln(n+1)(ξx)K(x)(n+1)!=0

由于 L n L_n Ln n n n 次多项式,因此, L n ( n + 1 ) ( ξ x ) = 0 L_n^{(n+1)}(\xi_x)=0 Ln(n+1)(ξx)=0,所以有:

f ( n + 1 ) ( ξ x ) − K ( x ) ( n + 1 ) ! = 0 f^{(n+1)}(\xi_x)-K(x)(n+1)!=0 f(n+1)(ξx)K(x)(n+1)!=0

从而推导出: K ( x ) = f ( n + 1 ) ( ξ x ) ( n + 1 ) ! K(x)=\frac{f^{(n+1)}(\xi_x)}{(n+1)!} K(x)=(n+1)!f(n+1)(ξx)

K ( x ) K(x) K(x) 代回得:

R n ( x ) = f ( n + 1 ) ( ξ x ) ( n + 1 ) ! ∏ i = 0 n ( x − x i ) R_n(x)=\frac{f^{(n+1)}(\xi_x)}{(n+1)!}\prod_{i=0}^n{(x-x_i)} Rn(x)=(n+1)!f(n+1)(ξx)i=0n(xxi)

综上所述,我们可以得到如下的特殊情况:

在这里插入图片描述

另外,需要注意的是:

在这里插入图片描述

其中,第二点的意思是,如果原函数 f ( x ) f(x) f(x) 的阶数等于 n n n,那么当使用 m > n m>n m>n 个插值节点求出的拉格朗日插值多项式是精确的。

2.2.2.3 例题

例题1

在这里插入图片描述

例题2

在这里插入图片描述
在这里插入图片描述

从这个例题,可以发现,次数高的插值多项式误差更小。但绝对不是次数越高越好哦(次数过高会出现龙格现象)!

2.2.2.4 拉格朗日插值法的问题

拉格朗日插值法虽然简单易用,但是如果要增加或减少节点时,全部的基函数 l i ( x ) l_i(x) li(x) 都要重新计算,不太方便。

那么如何解决这个问题呢?

在这里插入图片描述

其实,上面的思想就是牛顿插值法的思想。本博客将在下面进行介绍。

2.2.3 牛顿插值法

2.2.3.1 牛顿插值思想

在这里插入图片描述

在这里插入图片描述

2.2.3.2 差商的定义

在介绍牛顿插值公式之前,我们需要介绍**差商(均差)**的定义:

首先给出一阶差商的定义式:

在这里插入图片描述

然后基于一阶差商,给出二阶差商的定义式(其实就是一阶差商的一阶差商):

在这里插入图片描述

最后,写出 k + 1 k+1 k+1 阶差商的定义式:

在这里插入图片描述

需要注意的是, k k k 阶差商必须由 k + 1 k+1 k+1 个节点构成, k k k 个节点是构造不出 k k k 阶差商的。

为了统一起见,补充定义函数 f ( x 0 ) f(x_0) f(x0) 为零阶差商,差商的值与 x i x_i xi 的顺序无关。

2.2.3.3 差商的性质

定义 ω \omega ω 如下:

在这里插入图片描述

然后,可以给出差商的4点性质:

在这里插入图片描述

2.2.3.4 差商表

差商表方便在编程的时候计算不同阶数的差商。

有了差商表,我们可以很容易通过递推的方式计算差商:

在这里插入图片描述

2.2.3.5 牛顿插值公式

牛顿插值是通过选取特殊的基函数来实现的,这时,取

φ 0 ( x ) = 1 φ i + 1 ( x ) = ( x − x i ) φ i ( x ) i = 0 , 1 , . . . , n − 1 \varphi_0(x)=1\\ \varphi_{i+1}(x)=(x-x_i)\varphi_i(x) \quad i=0,1,...,n-1 φ0(x)=1φi+1(x)=(xxi)φi(x)i=0,1,...,n1

作为牛顿插值的以 x 0 , x 1 , . . . , x n x_0,x_1,...,x_n x0,x1,...,xn 为节点的基函数,而次数不超过 n n n 的多项式 N n ( x ) N_n(x) Nn(x) 可表示为:

N n ( x ) = c 0 + c 1 ( x − x 0 ) + c 2 ( x − x 0 ) ( x − x 1 ) + . . . + c n ( x − x 0 ) ( x − x 1 ) . . . ( x − x n − 1 ) N_n(x)=c_0+c_1(x-x_0)+c_2(x-x_0)(x-x_1)+...+c_n(x-x_0)(x-x_1)...(x-x_{n-1}) Nn(x)=c0+c1(xx0)+c2(xx0)(xx1)+...+cn(xx0)(xx1)...(xxn1)

其中, c 0 , c 1 , . . . , c n c_0,c_1,...,c_n c0,c1,...,cn 是待定系数,由插值条件决定。

带入插值条件很容易计算得:

在这里插入图片描述
在这里插入图片描述

根据上述结果,运用数学归纳法可以求得:

c k = f [ x 0 , x 1 , . . . , x k ] c_k=f[x_0,x_1,...,x_k] ck=f[x0,x1,...,xk]

因此就得到下面的满足插值条件的 n n n 次牛顿插值多项式:

在这里插入图片描述

2.2.3.6 牛顿插值余项

在这里插入图片描述
在这里插入图片描述

2.2.3.7 等距节点公式

当节点等距分布时: x i = x 0 + i h ( i = 0 , 1 , . . . , n ) x_i=x_0+ih \quad (i=0,1,...,n) xi=x0+ih(i=0,1,...,n),利用差分,减少差商的除法运算次数,提高效率,下面是关于差分的定义

在这里插入图片描述

然后是一些关于差分的性质:

在这里插入图片描述

然后介绍前插和后插公式:

在这里插入图片描述

x x x 靠近 x 0 x_0 x0 时用前插公式,否则用后插公式

使用牛顿前插或者后插公式,先构造差分表如下:

在这里插入图片描述

2.2.3.8 例题

例题1

在这里插入图片描述
在这里插入图片描述

例题2

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于【数值分析】2 - 插值法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/265530

相关文章

Springboot请求和响应相关注解及使用场景分析

《Springboot请求和响应相关注解及使用场景分析》本文介绍了SpringBoot中用于处理HTTP请求和构建HTTP响应的常用注解,包括@RequestMapping、@RequestParam... 目录1. 请求处理注解@RequestMapping@GetMapping, @PostMappin

MySQL字符串转数值的方法全解析

《MySQL字符串转数值的方法全解析》在MySQL开发中,字符串与数值的转换是高频操作,本文从隐式转换原理、显式转换方法、典型场景案例、风险防控四个维度系统梳理,助您精准掌握这一核心技能,需要的朋友可... 目录一、隐式转换:自动但需警惕的&ld编程quo;双刃剑”二、显式转换:三大核心方法详解三、典型场景

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

C++ scoped_ptr 和 unique_ptr对比分析

《C++scoped_ptr和unique_ptr对比分析》本文介绍了C++中的`scoped_ptr`和`unique_ptr`,详细比较了它们的特性、使用场景以及现代C++推荐的使用`uni... 目录1. scoped_ptr基本特性主要特点2. unique_ptr基本用法3. 主要区别对比4. u

Nginx内置变量应用场景分析

《Nginx内置变量应用场景分析》Nginx内置变量速查表,涵盖请求URI、客户端信息、服务器信息、文件路径、响应与性能等类别,这篇文章给大家介绍Nginx内置变量应用场景分析,感兴趣的朋友跟随小编一... 目录1. Nginx 内置变量速查表2. 核心变量详解与应用场景3. 实际应用举例4. 注意事项Ng

Java多种文件复制方式以及效率对比分析

《Java多种文件复制方式以及效率对比分析》本文总结了Java复制文件的多种方式,包括传统的字节流、字符流、NIO系列、第三方包中的FileUtils等,并提供了不同方式的效率比较,同时,还介绍了遍历... 目录1 背景2 概述3 遍历3.1listFiles()3.2list()3.3org.codeha

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT