Introduction to Advanced Machine Learning, 第一周, week01_pa(hse-aml/intro-to-dl,简单注释,答案,附图)

本文主要是介绍Introduction to Advanced Machine Learning, 第一周, week01_pa(hse-aml/intro-to-dl,简单注释,答案,附图),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这是俄罗斯高等经济学院的系列课程第一门,Introduction to Advanced Machine Learning,第一周编程作业。
这个作业一共六个任务,难易程度:容易。
1. 计算probability
2. 计算loss function
3. 计算stochastic gradient
4. 计算mini-batch gradient
5. 计算momentum gradient
6. 计算RMS prop gradient
从3到6,收敛应该越来越快,越来越稳定。

Programming assignment (Linear models, Optimization)

In this programming assignment you will implement a linear classifier and train it using stochastic gradient descent modifications and numpy.

import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
import sys
sys.path.append("..")
import grading

Two-dimensional classification

To make things more intuitive, let’s solve a 2D classification problem with synthetic data.

with open('train.npy', 'rb') as fin:X = np.load(fin)with open('target.npy', 'rb') as fin:y = np.load(fin)plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired, s=20)
plt.show()

!这里写图片描述

Task

Features

As you can notice the data above isn’t linearly separable. Since that we should add features (or use non-linear model). Note that decision line between two classes have form of circle, since that we can add quadratic features to make the problem linearly separable. The idea under this displayed on image below:

def expand(X):"""Adds quadratic features. This expansion allows your linear model to make non-linear separation.For each sample (row in matrix), compute an expanded row:[feature0, feature1, feature0^2, feature1^2, feature0*feature1, 1]:param X: matrix of features, shape [n_samples,2]:returns: expanded features of shape [n_samples,6]"""X_expanded = np.ones((X.shape[0], 6))X_expanded[:,0] = X[:,0]X_expanded[:,1] = X[:,1]X_expanded[:,2] = X[:,0] * X[:,0]X_expanded[:,3] = X[:,1] * X[:,1]X_expanded[:,4] = X[:,0] * X[:,1]return X_expanded
X_expanded = expand(X)
print(X_expanded)
[[ 1.20798057  0.0844994   1.45921706  0.00714015  0.10207364  1.        ][ 0.76121787  0.72510869  0.57945265  0.52578261  0.5519657   1.        ][ 0.55256189  0.51937292  0.30532464  0.26974823  0.28698568  1.        ]..., [-1.22224754  0.45743421  1.49388906  0.20924606 -0.55909785  1.        ][ 0.43973452 -1.47275142  0.19336645  2.16899674 -0.64761963  1.        ][ 1.4928118   1.15683375  2.22848708  1.33826433  1.72693508  1.        ]]

Here are some tests for your implementation of expand function.

# simple test on random numbersdummy_X = np.array([[0,0],[1,0],[2.61,-1.28],[-0.59,2.1]])# call your expand function
dummy_expanded = expand(dummy_X)# what it should have returned:   x0       x1       x0^2     x1^2     x0*x1    1
dummy_expanded_ans = np.array([[ 0.    ,  0.    ,  0.    ,  0.    ,  0.    ,  1.    ],[ 1.    ,  0.    ,  1.    ,  0.    ,  0.    ,  1.    ],[ 2.61  , -1.28  ,  6.8121,  1.6384, -3.3408,  1.    ],[-0.59  ,  2.1   ,  0.3481,  4.41  , -1.239 ,  1.    ]])#tests
assert isinstance(dummy_expanded,np.ndarray), "please make sure you return numpy array"
assert dummy_expanded.shape == dummy_expanded_ans.shape, "please make sure your shape is correct"
assert np.allclose(dummy_expanded,dummy_expanded_ans,1e-3), "Something's out of order with features"print("Seems legit!")
Seems legit!

Logistic regression

To classify objects we will obtain probability of object belongs to class ‘1’. To predict probability we will use output of linear model and logistic function:

a(x;w)=w,x a ( x ; w ) = ⟨ w , x ⟩

P(y=1x,w)=11+exp(w,x)=σ(w,x) P ( y = 1 | x , w ) = 1 1 + exp ⁡ ( − ⟨ w , x ⟩ ) = σ ( ⟨ w , x ⟩ )

def probability(X, w):"""Given input features and weightsreturn predicted probabilities of y==1 given x, P(y=1|x), see description aboveDon't forget to use expand(X) function (where necessary) in this and subsequent functions.:param X: feature matrix X of shape [n_samples,6] (expanded):param w: weight vector w of shape [6] for each of the expanded features:returns: an array of predicted probabilities in [0,1] interval."""# TODO:<your code here>prob = 1/(1+np.exp(-np.dot(X,w)))
dummy_weights = np.linspace(-1, 1, 6)
ans_part1 = probability(X_expanded[:1, :], dummy_weights)[0]
## GRADED PART, DO NOT CHANGE!
grader.set_answer("xU7U4", ans_part1)
# you can make submission with answers so far to check yourself at this stage
grader.submit(COURSERA_EMAIL, COURSERA_TOKEN)

In logistic regression the optimal parameters w w are found by cross-entropy minimization:

L(w)=1i=1[yilogP(yi|xi,w)+(1yi)log(1P(yi|xi,w))]

def compute_loss(X, y, w):"""Given feature matrix X [n_samples,6], target vector [n_samples] of 1/0,and weight vector w [6], compute scalar loss function using formula above."""# TODO:<your code here>prob = probability(X,w)n_sample = X.shape[0]loss = -sum(y * np.log(prob) + (1-y) * np.log(1-prob))/n_sample
# use output of this cell to fill answer field 
ans_part2 = compute_loss(X_expanded, y, dummy_weights)
## GRADED PART, DO NOT CHANGE!
grader.set_answer("HyTF6", ans_part2)
# you can make submission with answers so far to check yourself at this stage
grader.submit(COURSERA_EMAIL, COURSERA_TOKEN)

Since we train our model with gradient descent, we should compute gradients.

To be specific, we need a derivative of loss function over each weight [6 of them].

wL=... ∇ w L = . . .

We won’t be giving you the exact formula this time — instead, try figuring out a derivative with pen and paper.

As usual, we’ve made a small test for you, but if you need more, feel free to check your math against finite differences (estimate how L L changes if you shift w by 105 10 − 5 or so).

def compute_grad(X, y, w):"""Given feature matrix X [n_samples,6], target vector [n_samples] of 1/0,and weight vector w [6], compute vector [6] of derivatives of L over each weights."""# X [n,d] n examples, d features# y [n,] n examples, outputs# w [d,] d features# grad[d]# np.dot(X.T, dz) [d,n][n,] = [d,]# TODO<your code here>a = probability(X,w)dz = a - y #[n,]grad = -1.0 / X.shape[0] * np.dot(X.T, dz)# because the minus here, the following update is positive, instead of negative.
# use output of this cell to fill answer field 
ans_part3 = np.linalg.norm(compute_grad(X_expanded, y, dummy_weights))
## GRADED PART, DO NOT CHANGE!
grader.set_answer("uNidL", ans_part3)
# you can make submission with answers so far to check yourself at this stage
grader.submit(COURSERA_EMAIL, COURSERA_TOKEN)

Here’s an auxiliary function that visualizes the predictions:

from IPython import displayh = 0.01
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))def visualize(X, y, w, history):"""draws classifier prediction with matplotlib magic"""Z = probability(expand(np.c_[xx.ravel(), yy.ravel()]), w)Z = Z.reshape(xx.shape)plt.subplot(1, 2, 1)plt.contourf(xx, yy, Z, alpha=0.8)plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired)plt.xlim(xx.min(), xx.max())plt.ylim(yy.min(), yy.max())plt.subplot(1, 2, 2)plt.plot(history)plt.grid()ymin, ymax = plt.ylim()plt.ylim(0, ymax)display.clear_output(wait=True)plt.show()
visualize(X, y, dummy_weights, [0.5, 0.5, 0.25])

Training

In this section we’ll use the functions you wrote to train our classifier using stochastic gradient descent.

You can try change hyperparameters like batch size, learning rate and so on to find the best one, but use our hyperparameters when fill answers.

Mini-batch SGD

Stochastic gradient descent just takes a random example on each iteration, calculates a gradient of the loss on it and makes a step:

wt=wt1η1mj=1mwL(wt,xij,yij) w t = w t − 1 − η 1 m ∑ j = 1 m ∇ w L ( w t , x i j , y i j )

# please use np.random.seed(42), eta=0.1, n_iter=100 and batch_size=4 for deterministic resultsnp.random.seed(42)
w = np.array([0, 0, 0, 0, 0, 1])eta= 0.1 # learning raten_iter = 100
batch_size = 4
loss = np.zeros(n_iter)
plt.figure(figsize=(12, 5))for i in range(n_iter):ind = np.random.choice(X_expanded.shape[0], batch_size)loss[i] = compute_loss(X_expanded, y, w)if i % 10 == 0:visualize(X_expanded[ind, :], y[ind], w, loss)# TODO:<your code here>grad = compute_grad(X_expanded[ind, :],y[ind],w)w  = w + eta * grad
visualize(X, y, w, loss)
plt.clf()
# use output of this cell to fill answer field ans_part4 = compute_loss(X_expanded, y, w)

这里写图片描述

## GRADED PART, DO NOT CHANGE!
grader.set_answer("ToK7N", ans_part4)
# you can make submission with answers so far to check yourself at this stage
grader.submit(COURSERA_EMAIL, COURSERA_TOKEN)

SGD with momentum

Momentum is a method that helps accelerate SGD in the relevant direction and dampens oscillations as can be seen in image below. It does this by adding a fraction α α of the update vector of the past time step to the current update vector.


νt=ανt1+η1mj=1mwL(wt,xij,yij) ν t = α ν t − 1 + η 1 m ∑ j = 1 m ∇ w L ( w t , x i j , y i j )

wt=wt1νt w t = w t − 1 − ν t


# please use np.random.seed(42), eta=0.05, alpha=0.9, n_iter=100 and batch_size=4 for deterministic results
np.random.seed(42)
w = np.array([0, 0, 0, 0, 0, 1])eta = 0.05 # learning rate
alpha = 0.9 # momentum
nu = np.zeros_like(w)n_iter = 100
batch_size = 4
loss = np.zeros(n_iter)
plt.figure(figsize=(12, 5))for i in range(n_iter):ind = np.random.choice(X_expanded.shape[0], batch_size)loss[i] = compute_loss(X_expanded, y, w)if i % 10 == 0:visualize(X_expanded[ind, :], y[ind], w, loss)# TODO:<your code here>nu = alpha * nu + eta *  compute_grad(X_expanded[ind, :],y[ind],w)w  = w + nu
visualize(X, y, w, loss)
plt.clf()
# use output of this cell to fill answer field ans_part5 = compute_loss(X_expanded, y, w)

这里写图片描述

## GRADED PART, DO NOT CHANGE!
grader.set_answer("GBdgZ", ans_part5)
# you can make submission with answers so far to check yourself at this stage
grader.submit(COURSERA_EMAIL, COURSERA_TOKEN)

RMSprop

Implement RMSPROP algorithm, which use squared gradients to adjust learning rate:

Gtj=αGt1j+(1α)g2tj G j t = α G j t − 1 + ( 1 − α ) g t j 2

wtj=wt1jηGtj+εgtj w j t = w j t − 1 − η G j t + ε g t j

# please use np.random.seed(42), eta=0.1, alpha=0.9, n_iter=100 and batch_size=4 for deterministic results
np.random.seed(42)w = np.array([0, 0, 0, 0, 0, 1.])eta = 0.1 # learning rate
alpha = 0.9 # moving average of gradient norm squared
g2 = np.zeros_like(w)
eps = 1e-8n_iter = 100
batch_size = 4
loss = np.zeros(n_iter)
plt.figure(figsize=(12,5))
for i in range(n_iter):ind = np.random.choice(X_expanded.shape[0], batch_size)loss[i] = compute_loss(X_expanded, y, w)if i % 10 == 0:visualize(X_expanded[ind, :], y[ind], w, loss)# TODO:<your code here>grad = compute_grad(X_expanded[ind, :],y[ind],w)g2 = alpha * g2 + (1-alpha) * grad ** 2w  = w + eta/np.sqrt(g2 + eps) * grad
visualize(X, y, w, loss)
plt.clf()

这里写图片描述

# use output of this cell to fill answer field 
ans_part6 = compute_loss(X_expanded, y, w)
## GRADED PART, DO NOT CHANGE!
grader.set_answer("dLdHG", ans_part6)
grader.submit(COURSERA_EMAIL, COURSERA_TOKEN)

这篇关于Introduction to Advanced Machine Learning, 第一周, week01_pa(hse-aml/intro-to-dl,简单注释,答案,附图)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/264446

相关文章

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

hdu2289(简单二分)

虽说是简单二分,但是我还是wa死了  题意:已知圆台的体积,求高度 首先要知道圆台体积怎么求:设上下底的半径分别为r1,r2,高为h,V = PI*(r1*r1+r1*r2+r2*r2)*h/3 然后以h进行二分 代码如下: #include<iostream>#include<algorithm>#include<cstring>#include<stack>#includ

usaco 1.3 Prime Cryptarithm(简单哈希表暴搜剪枝)

思路: 1. 用一个 hash[ ] 数组存放输入的数字,令 hash[ tmp ]=1 。 2. 一个自定义函数 check( ) ,检查各位是否为输入的数字。 3. 暴搜。第一行数从 100到999,第二行数从 10到99。 4. 剪枝。 代码: /*ID: who jayLANG: C++TASK: crypt1*/#include<stdio.h>bool h

uva 10387 Billiard(简单几何)

题意是一个球从矩形的中点出发,告诉你小球与矩形两条边的碰撞次数与小球回到原点的时间,求小球出发时的角度和小球的速度。 简单的几何问题,小球每与竖边碰撞一次,向右扩展一个相同的矩形;每与横边碰撞一次,向上扩展一个相同的矩形。 可以发现,扩展矩形的路径和在当前矩形中的每一段路径相同,当小球回到出发点时,一条直线的路径刚好经过最后一个扩展矩形的中心点。 最后扩展的路径和横边竖边恰好组成一个直

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 10130 简单背包

题意: 背包和 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <queue>#include <map>

poj 3104 二分答案

题意: n件湿度为num的衣服,每秒钟自己可以蒸发掉1个湿度。 然而如果使用了暖炉,每秒可以烧掉k个湿度,但不计算蒸发了。 现在问这么多的衣服,怎么烧事件最短。 解析: 二分答案咯。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <c

vscode中文乱码问题,注释,终端,调试乱码一劳永逸版

忘记咋回事突然出现了乱码问题,很多方法都试了,注释乱码解决了,终端又乱码,调试窗口也乱码,最后经过本人不懈努力,终于全部解决了,现在分享给大家我的方法。 乱码的原因是各个地方用的编码格式不统一,所以把他们设成统一的utf8. 1.电脑的编码格式 开始-设置-时间和语言-语言和区域 管理语言设置-更改系统区域设置-勾选Bata版:使用utf8-确定-然后按指示重启 2.vscode

消除安卓SDK更新时的“https://dl-ssl.google.com refused”异常的方法

消除安卓SDK更新时的“https://dl-ssl.google.com refused”异常的方法   消除安卓SDK更新时的“https://dl-ssl.google.com refused”异常的方法 [转载]原地址:http://blog.csdn.net/x605940745/article/details/17911115 消除SDK更新时的“

JAVA用最简单的方法来构建一个高可用的服务端,提升系统可用性

一、什么是提升系统的高可用性 JAVA服务端,顾名思义就是23体验网为用户提供服务的。停工时间,就是不能向用户提供服务的时间。高可用,就是系统具有高度可用性,尽量减少停工时间。如何用最简单的方法来搭建一个高效率可用的服务端JAVA呢? 停工的原因一般有: 服务器故障。例如服务器宕机,服务器网络出现问题,机房或者机架出现问题等;访问量急剧上升,导致服务器压力过大导致访问量急剧上升的原因;时间和