PKU 概率论+数理统计 期中考复习总结

2023-10-22 21:44

本文主要是介绍PKU 概率论+数理统计 期中考复习总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这里写目录标题

  • 计算条件概率
  • 计算概率(放回与不放回)
  • 生成随机数算法
  • Uniformity (test of frequency)
    • 1.Chi-Square test
    • 2.Kolmogorov-Sminov test
  • Independence (test of autocorrelation)
    • Runs test
  • Acceptance-rejection method
  • Empirical distribution 经验分布
    • Ungrouped data
      • condition
      • method
      • construction method
      • 生成U去寻找x
    • grouped data
      • condition
      • construction method
      • example
      • How about discrete empirical distribution?
      • 经验分布的优点与缺点
  • Maximum Likelihood Estimator 最大似然估计

计算条件概率

【作业题】
Suppose that Die-Hardly-Ever battery has an exponential time-to-failure
distribution with a mean of 48 months. At 60 months, the battery is still operating.

  1. What is the probability that this battery is going to die in the next 12 months?
  2. What is the probability that the battery dies in an odd year of its life?
  3. If the battery is operating at 60 months, compute the expected additional months of life.

【重点】条件概率+无记忆性
P ( x > s + t ∣ x > t ) = P ( x > s ) P(x>s+t|x>t)=P(x>s) P(x>s+tx>t)=P(x>s)

计算概率(放回与不放回)

Suppose that a man has k keys, one of which will open a door. Compute
the expected number of keys required to open the door for the following two cases:
a. The keys are tried one at a time without replacement.(不放回)
b. The keys are tried one at time with replacement.(放回)
在这里插入图片描述

生成随机数算法

在这里插入图片描述【作业题】可能考察是否full period

Uniformity (test of frequency)

检验样本是否服从均匀分布

对前提进行假设
F r e q u e n c y Frequency Frequency
H 0 : R i ′ s U ( 0 , 1 ) H_0:R_i's~U(0,1) H0:Ris U(0,1)
H 1 : R i ′ s n o t U ( 0 , 1 ) H_1:R_i's not U(0,1) H1:RisnotU(0,1)

在测试前要说明清楚,显著性水平
α = P ( t y p e o n e e r r o r ) = p ( r e j e c t H 0 ∣ H 0 i s t r u e ) \alpha=P(type\ one\ error)=p(reject\ H_0|H_0 is\ true) α=P(type one error)=p(reject H0H0is true)

1.Chi-Square test

  • 卡方检验的期望值 E i E_i Ei要求 E i ≥ 5 E_i≥5 Ei5【这个是为了确保近似分布是合理的】

检验是否服从 U ( 0 , 1 ) U(0, 1) U(0,1)如下,

  1. 将[0,1]分成k个等长子区间(对应Reminder的Equal probability)
  2. 计算 O j O_j Oj,其为样本数据 R i R_i Ri落在子区间 ( j − 1 k , j k ] (\frac{j-1}{k},\frac{j}{k}] (kj1,kj]的频次
  3. E j = E ( O j ) = n k E_j=E(O_j)=\frac{n}{k} Ej=E(Oj)=kn观测值在j区间的期望
  4. 计算卡方 X 0 2 = ∑ j = 1 k ( O j − E j ) 2 E j {X_0}^2=\sum_{j=1}^{k}{\frac{(O_j-E_j)^2}{E_j}} X02=j=1kEj(OjEj)2
  5. Reject Ho if X 0 2 > X k − 1 , α 2 {X_0}^2>X_{k-1,\alpha}^2 X02>Xk1,α2

在这里插入图片描述

2.Kolmogorov-Sminov test

流程如下,

  1. Rank R ( 1 ) ≤ R ( 2 ) ≤ . . . ≤ R ( N ) R_{(1)}≤R_{(2)}≤...≤R_{(N)} R(1)R(2)...R(N)
  2. compute D + = max ⁡ 1 ≤ i ≤ N { i N − R ( i ) } D^+=\max_{1≤i≤N}\{\frac{i}{N}-R_{(i)}\} D+=1iNmax{NiR(i)}
    D − = max ⁡ 1 ≤ i ≤ N { R ( i ) − i − 1 N } D^-=\max_{1≤i≤N}\{R_{(i)}-\frac{i-1}{N}\} D=1iNmax{R(i)Ni1}
  3. compute D = m a x ( D + , D − ) D=max(D^+, D^-) D=max(D+,D)
  4. 拒绝 H 0 H_0 H0 if D > D α ( N ) D>D_{\alpha}(N) D>Dα(N)

Independence (test of autocorrelation)

Runs test

Acceptance-rejection method

This method uses an auxiliary function t(x) that is everywhere ≥ the density f(x) of the RV X we want to simulate
接受-拒绝采样,这个方法使用一个辅助函数 t ( x ) t(x) t(x) t ( x ) t(x) t(x)函数满足处处 t ( x ) ≥ f ( x ) t(x)≥f(x) t(x)f(x) f ( x ) f(x) f(x)是随机变量X的概率密度函数,X就是我们想要进行模拟的随机变量。

显然,处处 t ( x ) ≥ 0 t(x)≥0 t(x)0

引入 t ( x ) t(x) t(x)去求解 c c c

不妨,令 r ( x ) = t ( x ) c r(x)=\frac{t(x)}{c} r(x)=ct(x),其一定为概率密度

我们必须选择 t t t,以此能更轻松的从 r ( x ) r(x) r(x)概率密度函数中采样。

method

  1. 从概率密度r(x)中产生Y
  2. 产生均匀分布U(0, 1)变量U,其独立于Y
  3. 这意味着我们必须使用其他的随机变量
  4. U ≤ f ( Y ) t ( Y ) U≤\frac{f(Y)}{t(Y)} Ut(Y)f(Y)时,则令 X = Y X=Y X=Y,否则就回到第一步重新产生Y。

例题 Problem 7: Give an algorithm for generating a standard normal random variable X ∼ N(0,1).
(Hint: if we can generate from the absolute value |X|, then by symmetry we can obtain X by independently generating a rv U (for sign) that is ±1 with probability 1/2 and setting X = U|X|.)

方法1:建议函数使用指数分布

(1)前提准备
首先,根据已知分布的概率密度函数f(x),产生服从此分布的样本X

f ( x ) = 1 2 π e − x 2 2 ( − ∞ < x < + ∞ ) f(x)=\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} (-\infty<x<+\infty) f(x)=2π 1e2x2(<x<+)

但根据题目提示,我们仅能产生|X|,不过同理,不妨设随机变量Z, Z = ∣ X ∣ Z=|X| Z=X,由X的概率密度函数我们可以知道Z的概率密度函数
f Z ( z ) = 2 2 Π e − z 2 2 ( z ≥ 0 ) f_Z(z)=\frac{2}{\sqrt{2Π}}e^{-\frac{z^2}{2}} (z≥0) fZ(z)= 2e2z2(z0)
此时再找一个建议函数(辅助函数),即随机变量Y,其服从指数分布,故我们可得其概率密度函数
f Y ( y ) = λ e − λ y ( y > 0 ) f_Y(y)=\lambda e^{-\lambda y} (y>0) fY(y)=λeλy(y>0)
(2)我们首先得确定建议函数的参数 λ \lambda λ与Acceptance-rejection method的参数c(在Acceptance-rejection method算法中我们希望c能接近1)

c ∗ g ( x ) ≥ f ( x ) c*g(x)≥f(x) cg(x)f(x),g(x)为建议函数

c f Y ( u ) f Z ( u ) = c λ e − λ u 2 2 π e − u 2 2 = c λ 2 π 2 e 1 2 ( u − λ ) 2 − λ 2 2 \frac{cf_Y(u)}{f_Z(u)}=\frac{c\lambda e^{-\lambda u}} {\frac{2}{\sqrt{2\pi}}e^{-\frac{u^2}{2}}}= \frac{c\lambda\sqrt{2\pi}}{2}e^{\frac{1}{2}(u-\lambda)^2-\frac{\lambda^2}{2}} fZ(u)cfY(u)=2π 2e2u2cλeλu=2cλ2π e21(uλ)22λ2
易得
c λ 2 π 2 e 1 2 ( u − λ ) 2 − λ 2 2 ≥ c λ 2 π 2 e − λ 2 2 \frac{c\lambda\sqrt{2\pi}}{2}e^{\frac{1}{2}(u-\lambda)^2-\frac{\lambda^2}{2}}≥c\frac{\lambda\sqrt{2\pi}}{2}e^{-\frac{\lambda^2}{2}} 2cλ2π e21(uλ)22λ2c2λ2π e2λ2

不妨令 λ = 1 \lambda=1 λ=1 c = 2 2 π e 1 2 c=\frac{2}{\sqrt{2\pi}}e^{\frac{1}{2}} c=2π 2e21
(这么令代入便于计算)
即可以满足 c f Y ( u ) f Z ( u ) ≥ 1 \frac{cf_Y(u)}{f_Z(u)}≥1 fZ(u)cfY(u)1
此时确定可以将 f Y ( u ) f_Y(u) fY(u)作为我们的建议函数(辅助函数)
t ( y ) = c f Y ( y ) t(y)=cf_Y(y) t(y)=cfY(y)
(课件中使用t(x)代表建议函数,故此用t表示)

(3)由(2)已将建议函数 t ( y ) = c f Y ( y ) t(y)=cf_Y(y) t(y)=cfY(y)找好,接下来我们从中进行采样

【第一个是为了得到样本Y】

  • 生成随机变量U1,其服从U(0,1)的均匀分布,从中生成u1,从而获得采样点y
    y = F − 1 ( u 1 ) = − l n ( 1 − u 1 ) y=F^{-1}(u1)=-ln(1-u_1) y=F1(u1)=ln(1u1)(这个可由指数分布的分布函数去进行求逆变换得到)

【第二个是为了得到样本U】

  • 再生成一个随机变量U2,其也服从U(0, 1)的均匀分布,从中得到u2,且随机变量U1和U2相互独立
    if u 1 ≤ f Z ( y ) c f Y ( y ) u1≤\frac{f_Z(y)}{cf_Y(y)} u1cfY(y)fZ(y)
    则该采样点可以取到,(接受)Z=y
    否则就拒绝回到(3)的开始重新进行采样。

(4)综上,我们产生了Z,其满足 Z = ∣ X ∣ Z=|X| Z=X,但我们实际求解的是X

  • 因此,再生成一个随机变量U3,其服从U(0, 1)的均匀分布,从中得到u3,且随机变量U3是独立于U1、U2
    m = { + 1 u3 ≤ 0.5 − 1 u3 > 0.5 m=\begin{cases} +1& \text{u3 ≤ 0.5}\\ -1& \text{u3 > 0.5} \end{cases} m={+11u3 ≤ 0.5u3 > 0.5
    X = m ∗ Z X=m*Z X=mZ即为采样所得服从N(0,1)标准正态分布

方法2:双指数分布生成正态分布

  1. 产生两个相互独立服从参数为1的指数分布的随机变量Y1、Y2
    Y 1 = − l n ( U 1 ) Y1=-ln(U_1) Y1=ln(U1)
    and Y 2 = − l n ( U 2 ) Y2=-ln(U_2) Y2=ln(U2)
  2. Y 2 ≥ ( Y 1 − 1 ) 2 2 Y_2≥\frac{(Y_1-1)^2}{2} Y22(Y11)2时,令 ∣ Z ∣ = Y 1 |Z|=Y_1 Z=Y1否则就回到第一步重新进行采样
  3. 生成随机变量U,其服从均匀分布U(0, 1)
    Z = { ∣ Z ∣ U ≤ 0.5 − ∣ Z ∣ U > 0.5 Z=\begin{cases} |Z|& \text{U ≤ 0.5}\\ -|Z|& \text{U > 0.5} \end{cases} Z={ZZU ≤ 0.5U > 0.5

方法3:

  1. 生成随机变量Y,其服从参数为1的指数分布;生成随机变量U1,并令 Y = − l n ( U 1 ) Y=-ln(U1) Y=ln(U1)
  2. 生成随机变量U2
  3. U 2 ≤ e − ( Y − 1 ) 2 2 U2≤e^{-\frac{(Y-1)^2}{2}} U2e2(Y1)2则令|Z|=Y,否则则回到第一步
  4. 生成U3,若U3≤0.5则Z=|Z|;若U3>0.5,则Z=-|Z|

注意第3步, U 2 ≤ e − ( Y − 1 ) 2 2 U2≤e^{-\frac{(Y-1)^2}{2}} U2e2(Y1)2,可得
− l n ( U 2 ) ≥ ( Y − 1 ) 2 / 2 -ln(U2)≥(Y-1)^2/2 ln(U2)(Y1)2/2
就可以简化 − l n ( U 2 ) -ln(U2) ln(U2)是服从参数为1的指数分布。

使用Acceptance-Rejection method对连续型随机变量有效,证明处处都有 P ( X ≤ x ) = F X ( x ) P(X≤x)=F_X(x) P(Xx)=FX(x)

设,事件A为接受事件,由Acceptance-Rejection method可知,当A发生时,可将采样Y去代替X,即X=Y
左边 = P ( X ≤ x ) = P ( Y ≤ x ∣ A ) = P ( Y ≤ x , A ) P ( A ) 左边=P(X≤x)=P(Y≤x|A)=\frac{P(Y≤x,A)}{P(A)} 左边=P(Xx)=P(YxA)=P(A)P(Yx,A)

对Y进行采样,得到y,可以取Y作为X的概率如下,
P ( A ∣ Y = y ) = P ( U ≤ f ( y ) t ( y ) ) = f ( y ) t ( y ) P(A|Y=y)=P(U≤\frac{f(y)}{t(y)})=\frac{f(y)}{t(y)} P(AY=y)=P(Ut(y)f(y))=t(y)f(y)
t(y)为建议分布的概率密度函数
U服从U(0, 1)的均匀分布,故概率如上。
0 ≤ f ( y ) t ( y ) ≤ 1 0≤\frac{f(y)}{t(y)}≤1 0t(y)f(y)1
f ( y ) ≤ t ( y ) f(y)≤t(y) f(y)t(y)
取r(y)为Y的概率密度函数
P ( A a n d Y ≤ x ) = ∫ − ∞ x P ( A a n d Y ≤ x ∣ Y = y ) r ( y ) d y P(A\ and\ Y ≤ x)=\int_{-\infty}^xP(A\ and\ Y ≤x|Y=y)r(y)dy P(A and Yx)=xP(A and YxY=y)r(y)dy
由区间知Y≤x必然成立,故
P ( A a n d Y ≤ x ) = ∫ − ∞ x P ( A a n d Y ≤ x ∣ Y = y ) r ( y ) d y = ∫ − ∞ x P ( A ∣ Y = y ) r ( y ) d y = ∫ − ∞ x f ( y ) t ( y ) ∗ t ( y ) c d y = 1 c ∫ − ∞ x f ( y ) d y = 1 c F ( x ) P(A\ and\ Y ≤ x)=\int_{-\infty}^xP(A\ and\ Y ≤x|Y=y)r(y)dy\\= \int_{-\infty}^xP(A|Y=y)r(y)dy\\ =\int_{-\infty}^x\frac{f(y)}{t(y)}*\frac{t(y)}{c}dy\\ =\frac{1}{c}\int_{-\infty}^xf(y)dy\\ =\frac{1}{c}F(x) P(A and Yx)=xP(A and YxY=y)r(y)dy=xP(AY=y)r(y)dy=xt(y)f(y)ct(y)dy=c1xf(y)dy=c1F(x)

又因为 P ( A ) = ∫ R P ( A ∣ Y = y ) r ( y ) d y = 1 c ∫ R f ( y ) d y = 1 c P(A)=\int_R P(A|Y=y)r(y)dy\\ =\frac{1}{c}\int_R f(y)dy=\frac{1}{c} P(A)=RP(AY=y)r(y)dy=c1Rf(y)dy=c1 P ( A ) = 1 c P(A)=\frac{1}{c} P(A)=c1

已知, = P ( X ≤ x ) = P ( Y ≤ x ∣ A ) = P ( Y ≤ x , A ) P ( A ) =P(X≤x)=P(Y≤x|A)=\frac{P(Y≤x,A)}{P(A)} =P(Xx)=P(YxA)=P(A)P(Yx,A)
P ( A a n d Y ≤ x ) = 1 c F ( x ) P(A\ and\ Y ≤ x)=\frac{1}{c}F(x) P(A and Yx)=c1F(x)带入
P ( A ) = 1 c P(A)=\frac{1}{c} P(A)=c1带入
解得, P ( X ≤ x ) = F ( x ) P(X≤x)=F(x) P(Xx)=F(x),综上得证。

Empirical distribution 经验分布

经验分布是分段线性不是阶梯式

重点:数据是否已经被分组

Ungrouped data

condition

当原始的数据已知且有具体的值的时候

method

这里我们可以使用插值法。

首先我们得到的是一组未经处理的数据,不妨设有n个

然后,根据数值由小到大对其进行排序,

  • 最小的值到 [ 0 , 1 n − 1 ] [0, \frac{1}{n-1}] [0,n11]
  • 接下来的值放到 [ 1 n − 1 , 2 n − 1 ] [\frac{1}{n-1}, \frac{2}{n-1}] [n11,n12]
  • 继续上述类似操作
  • 最大值分配到1上

这样,每个值都会和一个区间相对应

construction method

定义一个连续的、分段线性的分布函数F
将Xi单调递增排序,Xi表示第i小(Xi就是排序过的数值),此时可以得到F函数如下
{ 0 , if  x < X ( 1 ) i − 1 n + 1 + x − X i ( n − 1 ) ( X ( i + 1 ) − X ( i ) ) , if  X i ≤ x < X ( i + 1 ) ,  ∀ i < n − 1 1 , if  X ( n ) < x \begin{cases} 0& ,\text{if $x<X_{(1)}$}\\ \frac{i-1}{n+1}+\frac{x-X_i}{(n-1)(X_{(i+1)}-X_{(i)})}& ,\text{if $X_i≤x<X_{(i+1)}$, $\forall i<n-1$}\\ 1& ,\text{if $X_{(n)}<x$} \end{cases} 0n+1i1+(n1)(X(i+1)X(i))xXi1,if x<X(1),if Xix<X(i+1), ∀i<n1,if X(n)<x

生成U去寻找x

在这里插入图片描述
在这里插入图片描述

grouped data

condition

我们没有独立的数据样本点的时候,仅知道每组数据间隔中有多少数据,即

  • n j n_j nj个点在区间 [ a j − 1 , a j ] , j = 0 , , , , , k [a_{j-1},a_j],j=0,,,,,k [aj1,aj],j=0,,,,,k
  • ∑ n j = n \sum n_j=n nj=n
  • G ( a j ) = ( n 1 + . . . + n j ) / n , j ≥ 1 , G ( a 0 ) = 0 G(a_j)=(n_1+...+n_j)/n,j≥1,G(a_0)=0 G(aj)=(n1+...+nj)/n,j1,G(a0)=0
  • 分配 a j a_j aj [ G ( a j ) , G ( a j + 1 ) ] [G(a_j), G(a_{j+1})] [G(aj),G(aj+1)],剩下的数据也如上处理
    最后将0值分配给任意x<a0即可

construction method

在这里插入图片描述

example

Suppose we have 5 observations in [3,5), 10 in [5,6), 10 in [6,8), so n = 3

How about discrete empirical distribution?

  • Data Are Not Grouped
    对于数值x,定义p(x)为 值为x的数值个数占所有数值个数的比例
  • Only Grouped Data Are Available
    定义一个概率函数,使得一个区间内所有数值的概率之和为该区间数值个数占所有数值个数之比

经验分布的优点与缺点

优点

  1. 使用当前数据
  2. 易于操作

缺点

  1. 无法得到观察值范围外的数据
  2. 看起来不规则

Maximum Likelihood Estimator 最大似然估计

这篇关于PKU 概率论+数理统计 期中考复习总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/263773

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的

二分最大匹配总结

HDU 2444  黑白染色 ,二分图判定 const int maxn = 208 ;vector<int> g[maxn] ;int n ;bool vis[maxn] ;int match[maxn] ;;int color[maxn] ;int setcolor(int u , int c){color[u] = c ;for(vector<int>::iter

整数Hash散列总结

方法:    step1  :线性探测  step2 散列   当 h(k)位置已经存储有元素的时候,依次探查(h(k)+i) mod S, i=1,2,3…,直到找到空的存储单元为止。其中,S为 数组长度。 HDU 1496   a*x1^2+b*x2^2+c*x3^2+d*x4^2=0 。 x在 [-100,100] 解的个数  const int MaxN = 3000

状态dp总结

zoj 3631  N 个数中选若干数和(只能选一次)<=M 的最大值 const int Max_N = 38 ;int a[1<<16] , b[1<<16] , x[Max_N] , e[Max_N] ;void GetNum(int g[] , int n , int s[] , int &m){ int i , j , t ;m = 0 ;for(i = 0 ;

go基础知识归纳总结

无缓冲的 channel 和有缓冲的 channel 的区别? 在 Go 语言中,channel 是用来在 goroutines 之间传递数据的主要机制。它们有两种类型:无缓冲的 channel 和有缓冲的 channel。 无缓冲的 channel 行为:无缓冲的 channel 是一种同步的通信方式,发送和接收必须同时发生。如果一个 goroutine 试图通过无缓冲 channel

9.8javaweb项目总结

1.主界面用户信息显示 登录成功后,将用户信息存储在记录在 localStorage中,然后进入界面之前通过js来渲染主界面 存储用户信息 将用户信息渲染在主界面上,并且头像设置跳转,到个人资料界面 这里数据库中还没有设置相关信息 2.模糊查找 检测输入框是否有变更,有的话调用方法,进行查找 发送检测请求,然后接收的时候设置最多显示四个类似的搜索结果

java面试常见问题之Hibernate总结

1  Hibernate的检索方式 Ø  导航对象图检索(根据已经加载的对象,导航到其他对象。) Ø  OID检索(按照对象的OID来检索对象。) Ø  HQL检索(使用面向对象的HQL查询语言。) Ø  QBC检索(使用QBC(Qurey By Criteria)API来检索对象。 QBC/QBE离线/在线) Ø  本地SQL检索(使用本地数据库的SQL查询语句。) 包括Hibern

暑期学习总结

iOS学习 前言无限轮播图换头像网络请求按钮的configuration属性总结 前言 经过暑期培训,完成了五个项目的仿写,在项目中将零散的内容经过实践学习,有了不少收获,因此来总结一下比较重要的内容。 无限轮播图 这是写项目的第一个难点,在很多项目中都有使用,越写越熟练。 原理为制造两个假页,在首和尾分别制作最后一页和第一页的假页,当移动到假页时,使用取消动画的方式跳到