入手3060显卡真香,却不知如何配置YOLOv5环境?

2023-10-22 13:59

本文主要是介绍入手3060显卡真香,却不知如何配置YOLOv5环境?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 !!此文若有版权上的冲突,望及时联系本人,本人会在受到消息的第一时间进行修改。!!

 !!!注:请整篇文章读完再进行操作!!!

(文采有限、排版不佳,望各位读者多多包涵)

最近刚入手联想的r9000p/RTX3060系列笔记本,作为学生党使用真香~

但随之而来的问题就是由于硬件导致一些软件环境搭建十分繁琐,本人在学习机器视觉时需要借助YOLOv5来进行预训练,AI圈都知道深度学习跑起来需要NVIDIA显卡,但是3060显卡却不知如何正确匹配对应版本的pytorch,匹配之后YOLOv5依然无法正常运行到想要的结果。就以上问题,本人在此发表一篇博客,希望对各位读者起到一定帮助,同时作为以后自己搭建的参考。

1、进行YOLOv5训练的第一步就是配置一个虚拟环境(默认读者已经安装了Anaconda和pycharm),这边我们点击下方红勾,输入代码

conda create -n yolo python=3.8.5

创建一个名为yolo,python版本为3.8.5的虚拟环境(如果名字不同请记住自己的环境名)

 2、虚拟环境创建成功后,输入exit()退出虚拟环境,打开你从网上下载、用yolov5实现的小demo,这边我也可以给各位推荐一个我看过的up主的视频链接(视频内含其口罩demo下载)

手把手教你使用YOLOV5训练自己的目标检测模型_哔哩哔哩_bilibili

在你的demo下载完成后找到下载的文件夹,输入cmd,如下图:

选中输入cmd之后开启终端模式,如下图所示

 在此路径下激活刚刚你创建的虚拟环境,输入代码为:

 activate yolo

红框为你的虚拟环境名,表示此demo已经在虚拟环境下运行。

 3、在正式的YOLOv5环境准备前,还需要一个关键步骤就是修改镜像源,修改代码如下:

conda config --remove-key channels
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.bfsu.edu.cn/anaconda/cloud/pytorch/
conda config --set show_channel_urls yes
pip config set global.index-url https://mirrors.ustc.edu.cn/pypi/web/simple


直接将其复制到虚拟环境的终端内

 到此准备完毕,开始YOLOv5的环境准备。

4、因为其他旧版本的都可搜到,本人在这就直接讲3060(其余3050系列显卡应该都一样)系列该如何搭配,避免读者们踩坑。

本人先使用的是pytorch 1.8.0版本的,正版链接:Previous PyTorch Versions | PyTorch,输入代码

修改完镜像源之后下载会很快,

conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3 -c pytorch

下载完成后如图,

 再检查cuda是否符合要求, 

python

import torch

print(torch.__version__)

print(torch.cuda.is_available())

看见false之后人是懵的,当时也不知道问题在哪,搜了之后才知道是安装的pytorch版本和显卡不匹配。

 打开NVIDIA控制面板,查看驱动版本为466.92,对照CUDA 的配置表,发现之前的版本确实不匹配,只能删除整个虚拟环境进行重新下载,当然也可以不删除虚拟环境,利用pip uninstall torch 进行pytorch的卸载,但考虑到可能有残留文件造成干扰,本人选择删除虚拟环境。

看到此小伙伴们可能觉得有点坑,是的!你的想法没错,我当时搭建环境时安装了5次,从CPU跑--换GPU,cuda不匹配,删除修改,反反复复。

 再查组件信息,发现个细节,NVIDIA已经告诉了应该使用什么版本的CUDA,前去官网PyTorch

 

 复制蓝色(加入后面的 -c pytorch变成外网下载,速度很慢),下载完成后重复检测GPU是否合格,出现true,长舒口气~

 附下载版本:(亲测有效)

conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=11.3

 

5、接着就是下载一些其他必备的工具,如

pip install pycocotools-windows -i https://pypi.tuna.tsinghua.edu.cn/simple

pip install -r requirements.txt

pip install pyqt5

 输入dir ,确保你在当前文件目录下。全部安装好之后就开启你的训练,你以为到此结束?NO

6、输入 python detect.py --source data/images/bus.jpg --weights pretrained/yolov5s.pt

进行训练,发现报错!!!蓝色线为报错提示。

 修改,进入红色线的文件路径,磁盘不同、虚拟环境名字不同,路径中间也会有差异一定

E:\StudyTools\Anaconda\conda\envs\yolo\Lib\site-packages\torch\nn\modules

打开此upsampling.py文件,将代码注释并增添一行,之后就可正常运行,出现结果。

再次执行代码,结果储存在第三条红线文件夹路径内,成功!!!撒花

 之后就是修改为你的数据集进行代码上的各种修改,我也正在摸索,就不在此多谈了。

在此感谢b站up主肆十二-

22/4/16补充:如果跑val.py(验证集)时出现此类问题

 是pytorch版本1.11与YOLOv5版本不兼容,需要降低pytorch版本(可能版主下载的YOLOv5demo模型不是最新版,导致pytorch不兼容)

22/10/20补充:

报错1

"OSError: [WinError 1455] 页面文件太小,无法完成操作" 的解决方案:将文件所在磁盘虚拟内存设置一下,具体如下:

注意:步骤6中有的小伙伴没有E盘(新买的、没加固态的笔记本只有CD两个盘)就选D盘同样操作!!

 报错2:一串码,开头是An http error.....后面是')))',如下图

 解决:

用此代码先生成condarc文件,因为Windows 用户无法直接创建名为 .condarc 的文件。

conda config --set show_channel_urls yes 

接着找到condarc文件,双击打开,将镜像源中下面三行  https改成http

  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch

似乎不论清华源、阿里源、中科大源都可以,

注意!!!只改三行!!!

channels:- defaults
show_channel_urls: true
channel_alias: https://mirrors.tuna.tsinghua.edu.cn/anaconda
default_channels:- http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main- http://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free- http://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorchcustom_channels:conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudmsys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudbioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudmenpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudpytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloudsimpleitk: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud

 之后重新下载pytorch就解决了。

这篇关于入手3060显卡真香,却不知如何配置YOLOv5环境?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/261896

相关文章

Zookeeper安装和配置说明

一、Zookeeper的搭建方式 Zookeeper安装方式有三种,单机模式和集群模式以及伪集群模式。 ■ 单机模式:Zookeeper只运行在一台服务器上,适合测试环境; ■ 伪集群模式:就是在一台物理机上运行多个Zookeeper 实例; ■ 集群模式:Zookeeper运行于一个集群上,适合生产环境,这个计算机集群被称为一个“集合体”(ensemble) Zookeeper通过复制来实现

CentOS7安装配置mysql5.7 tar免安装版

一、CentOS7.4系统自带mariadb # 查看系统自带的Mariadb[root@localhost~]# rpm -qa|grep mariadbmariadb-libs-5.5.44-2.el7.centos.x86_64# 卸载系统自带的Mariadb[root@localhost ~]# rpm -e --nodeps mariadb-libs-5.5.44-2.el7

hadoop开启回收站配置

开启回收站功能,可以将删除的文件在不超时的情况下,恢复原数据,起到防止误删除、备份等作用。 开启回收站功能参数说明 (1)默认值fs.trash.interval = 0,0表示禁用回收站;其他值表示设置文件的存活时间。 (2)默认值fs.trash.checkpoint.interval = 0,检查回收站的间隔时间。如果该值为0,则该值设置和fs.trash.interval的参数值相等。

NameNode内存生产配置

Hadoop2.x 系列,配置 NameNode 内存 NameNode 内存默认 2000m ,如果服务器内存 4G , NameNode 内存可以配置 3g 。在 hadoop-env.sh 文件中配置如下。 HADOOP_NAMENODE_OPTS=-Xmx3072m Hadoop3.x 系列,配置 Nam

wolfSSL参数设置或配置项解释

1. wolfCrypt Only 解释:wolfCrypt是一个开源的、轻量级的、可移植的加密库,支持多种加密算法和协议。选择“wolfCrypt Only”意味着系统或应用将仅使用wolfCrypt库进行加密操作,而不依赖其他加密库。 2. DTLS Support 解释:DTLS(Datagram Transport Layer Security)是一种基于UDP的安全协议,提供类似于

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

安装nodejs环境

本文介绍了如何通过nvm(NodeVersionManager)安装和管理Node.js及npm的不同版本,包括下载安装脚本、检查版本并安装特定版本的方法。 1、安装nvm curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.0/install.sh | bash 2、查看nvm版本 nvm --version 3、安装

【IPV6从入门到起飞】5-1 IPV6+Home Assistant(搭建基本环境)

【IPV6从入门到起飞】5-1 IPV6+Home Assistant #搭建基本环境 1 背景2 docker下载 hass3 创建容器4 浏览器访问 hass5 手机APP远程访问hass6 更多玩法 1 背景 既然电脑可以IPV6入站,手机流量可以访问IPV6网络的服务,为什么不在电脑搭建Home Assistant(hass),来控制你的设备呢?@智能家居 @万物互联

高并发环境中保持幂等性

在高并发环境中保持幂等性是一项重要的挑战。幂等性指的是无论操作执行多少次,其效果都是相同的。确保操作的幂等性可以避免重复执行带来的副作用。以下是一些保持幂等性的常用方法: 唯一标识符: 请求唯一标识:在每次请求中引入唯一标识符(如 UUID 或者生成的唯一 ID),在处理请求时,系统可以检查这个标识符是否已经处理过,如果是,则忽略重复请求。幂等键(Idempotency Key):客户端在每次