RGB与YCBCR颜色空间转换及python实现

2023-10-22 10:40

本文主要是介绍RGB与YCBCR颜色空间转换及python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 问题描述
  • 解决方案
  • 原理
    • 0. 图像数据表示
          • 像素的概念
          • 像素的取值及表示
          • 彩色像素
          • 图像坐标系
    • 1. 灰度值与亮度的关系
    • 2. RGB颜色空间与颜色控制
    • 3. YCbCr颜色空间及与RGB的变换关系

问题描述

在处理鱼类行为图像时,遇到这样一个问题,拍摄的鱼类视频数据,经过背景相减、中值滤波的结果如下图所示:
在这里插入图片描述
在这里插入图片描述
可以看到,由于水面光源倒影反光的问题,导致在将鱼类进行分割的时候,总是会把光源算进去,就很烦。

解决方案

在17年浙江大学赵建博士论文《循环水养殖游泳型鱼类精准投喂研究》中,提到了这样一段话:

利用背景去除法对复杂实验环境下的鱼群目标前景分割具有重要意义。图2.2为本章研究中典型的鱼群目标前景分割流程。首先,将待处理图像由RGB色彩模型(图2.2a)转化至YCbCr模型(图2.2b);其次,将Cr分量下的图片信息提取出(图2.2c),因为相对于其他分量下的纹理信息,Cr分量下鱼群前景信息与背景信息纹理差异更明显。
在这里插入图片描述

好了,问题来了,为什么“在将RGB色彩模型转化至TCbCr模型之后,相对于其他分量下的纹理信息,Cr分量下鱼群前景信息与北京信息纹理差异更明显?

原理

0. 图像数据表示

以下内容来自图像数据表示

像素的概念

图像是由很多个小格子组成的,每个小格子都只有一种颜色,这是构成图像的最小单元——像素(pixel)。

像素的取值及表示

不同的像素值代表了不同的颜色,像素值的值域一般在0到255(包括)之间,也就是256个整数,因此可以用完整个unsigned char类型的值域,所以像素值一般都是用unsigned char类型表示。

但0-255并不能映射到像上图所示的彩色,而只是对应黑色到白色之间的灰度值(grayscale),如下图:
在这里插入图片描述

彩色像素

饱和的红绿蓝三种颜色叠加起来就是白色,假如其中一种颜色不那么“饱和”则可以表示其他的颜色,调节三种颜色的比例则可以表示我们常看到的24位色。灰度值的颜色空间在几何上可以用一根直线表示,而RGB彩色空间在几何上则对应了一个立方体,如下图:

在这里插入图片描述
要表示彩色值,我们需要3个维度,也就是3个图像通道,每个像素值用3个数字表示,如(255,255,255)表示白色,(255,0,0)表示红色,(255,255,0)表示黄色。

图像坐标系

在这里插入图片描述
图片中的值用numpy的数据结构表示图像,img这个numpy.array的第一个维度沿着行方向,第二个维度沿着列方向,第三个维度沿着通道

  • img[0, :]可以表示图像的第一行所有像素
  • img[…, 0]可以表示图像的第一个通道所有像素

以下内容来自RGB与YCBCR颜色空间转换及python实现

1. 灰度值与亮度的关系

人类能够从灰度图像中获取理解场景需要的大部分信息,所以看黑白电视机并不会严重影响人对视频中场景的理解。图像的亮度和像素值成正比(越亮的话,像素值就越大),如果需要增加图像的亮度,比如从黑色逐渐过渡到白色,就可以对单通道的灰度图像素值进行增加来实现。保存灰度图像的每个像素值一般采用8个bit,像素值的范围为0-255。

下面的例子展示了灰度图像的像素值增加时亮度的变化过程,假设图像初始像素值为0:
在这里插入图片描述
上面显示了lena图像像素值增加时肤色的变化。代码的实现比较简单,读取图片,然后不断的对图像的每个像素值增加偏移量:

import numpy as np
import matplotlib.pyplot as plt
import imageio
image = imageio.imread("lena.jpg")
# 设置每次循环像素的增加量
shift = 6*np.ones(shape=(64, 64))
plt.figure()for i in range(1, 17):plt.subplot(4, 4, i)plt.imshow(image/255, cmap="gray", vmin=0, vmax=1)plt.axis("off")image = image + shift

2. RGB颜色空间与颜色控制

RGB模型在硬件设备中被广泛的使用,通过R(红色)、G(绿色)、B(蓝色)三者进行叠加可以形成更多的颜色。RGB颜色空间和后面将要进行介绍的YCbCr颜色空间和HSV颜色空间存在线性的变换关系,所以只要拥有RGB图像就能得到其它颜色空间的图像
一幅图像中R、G、B分别作为三个通道,如果某两个通道的值为0,图像的颜色就会被不为零的那个通道控制。比如:
在这里插入图片描述
实现上面的效果需要三个步骤:

(1)创建一幅3通道的空图像

(2)给3通道空图像的R通道添加一幅单通道图像

(3)给3通道图像的R通道像素值不断增加偏移量

# 1:创建一幅3通道的空图像
= np.zeros(shape=(64, 64, 3))
r = imageio.imread("lena.jpg")/2
# 2:给3通道空图像的R通道添加一幅单通道图像
image[:, :, 0] = image[:, :, 0] + r
shift = 4*np.ones(shape=(64, 64))
plt.figure()for i in range(1, 17):plt.subplot(4, 4, i)plt.imshow(image/255, vmin=0, vmax=1)plt.axis("off")# (3)给3通道图像的R通道像素值不断增加偏移量image[:, :, 0] = image[:, :, 0] + shift

但是,由于最终图像呈现出的颜色是三R\G\B三者的叠加,而现实中不仅仅是其中之一的颜色,所以很难控制最终图像的颜色,所以我们需要其它的颜色空间。

3. YCbCr颜色空间及与RGB的变换关系

YCbCr颜色空间中的Y是亮度通道,Cb是蓝色分量,Cr是红色分量。它在电视系统中比较常用,比如早期的黑白电视机使用彩色电视信号线,就可以单独使用亮度值;这种功能RGB颜色空间就做不到,因为我们不能仅仅使用RGB中某个通道作为亮度信号来使用。

由于YCbCr经常和YUV颜色空间比较相似,所以二者容易被认为是从属或者等价关系,按照维基百科的说法:YUV 是模拟信号,而YCbCr是数字信号。

YCbCr和RGB存在线性的变换关系,本文介绍的变换矩阵来自ITU.BT-601,所规定的变换矩阵Trans形式如下:
在这里插入图片描述
实现rgb2ycbcr()函数只需要两个步骤:(1)创建变换矩阵Trans;(2)遍历图像每个像素点,并对三个通道分别进行矩阵计算。下面的代码展示了如何实现从RGB空间到YCBCR变换:

def rgb2ycbcr(rgb_image):"""convert rgb into ycbcr"""if len(rgb_image.shape)!=3 or rgb_image.shape[2]!=3:raise ValueError("input image is not a rgb image")rgb_image = rgb_image.astype(np.float32)# 1:创建变换矩阵,和偏移量transform_matrix = np.array([[0.257, 0.564, 0.098],[-0.148, -0.291, 0.439],[0.439, -0.368, -0.071]])shift_matrix = np.array([16, 128, 128])ycbcr_image = np.zeros(shape=rgb_image.shape)w, h, _ = rgb_image.shape# 2:遍历每个像素点的三个通道进行变换for i in range(w):for j in range(h):ycbcr_image[i, j, :] = np.dot(transform_matrix, rgb_image[i, j, :]) + shift_matrix       return ycbcr_image

如果想要求逆变换,只需要根据矩阵求逆法则进行就可以了,需要注意的是:逆变换时偏移矩阵也需要左乘变换矩阵Trans的逆!逆变换只需要将rgb2ycbcr中的transform_matrix求逆即可,再次强调:shift_matrix也需要乘以transform_matrix的逆,而不是直接减去shift_matrix!

def ycbcr2rgb(ycbcr_image):"""convert ycbcr into rgb"""if len(ycbcr_image.shape)!=3 or ycbcr_image.shape[2]!=3:raise ValueError("input image is not a rgb image")ycbcr_image = ycbcr_image.astype(np.float32)transform_matrix = np.array([[0.257, 0.564, 0.098],[-0.148, -0.291, 0.439],[0.439, -0.368, -0.071]])transform_matrix_inv = np.linalg.inv(transform_matrix)shift_matrix = np.array([16, 128, 128])rgb_image = np.zeros(shape=ycbcr_image.shape)w, h, _ = ycbcr_image.shapefor i in range(w):for j in range(h):rgb_image[i, j, :] = np.dot(transform_matrix_inv, ycbcr_image[i, j, :]) - np.dot(transform_matrix_inv, shift_matrix)return rgb_image.astype(np.uint8)

所需要的包以及绘图代码如下,绘图用到的就是上面定义的两个函数。首先将rgb转为ycbcr,在从ycbcr转为rgb:

import numpy as np
import imageio
import matplotlib.pyplot as plt
rgb_image = imageio.imread("lena.jpg")
ycbcr_image = rgb2ycbcr(rgb_image)
cycle_image = ycbcr2rgb(ycbcr_image)
images = [rgb_image, ycbcr_image, cycle_image]
titles = ["orignal", "ycbcr", "cycle"]
for i in range(1, len(images)+1):plt.subplot(1, 3, i)plt.title(titles[i-1])plt.imshow(images[i-1]/255)

下图中左边是原始的rgb图像,中间是转换得到的ycbcr空间图像,右边是再次转回rgb空间的图像:
在这里插入图片描述
最后,对比了opencv提供的标准库的转换效果:

import cv2
rgb_image = imageio.imread("lena.jpg")
ycrcb_image = cv2.cvtColor(rgb_image, cv2.COLOR_RGB2YCR_CB)
cycle_image = cv2.cvtColor(ycbcr_image, cv2.COLOR_YCR_CB2RGB)
images = [rgb_image, ycrcb_image, cycle_image]
titles = ["orignal", "ycrcb", "cycle"]
for i in range(1, len(images)+1):plt.subplot(1, 3, i)plt.title(titles[i-1])plt.imshow(images[i-1]/255)

在这里插入图片描述
原始rgb效果和cycle(重构)效果很接近,而中间结果不一致是因为opencv采用的是“ycrcb”,而不是“ycbcr”。

这篇关于RGB与YCBCR颜色空间转换及python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/260893

相关文章

Python列表去重的4种核心方法与实战指南详解

《Python列表去重的4种核心方法与实战指南详解》在Python开发中,处理列表数据时经常需要去除重复元素,本文将详细介绍4种最实用的列表去重方法,有需要的小伙伴可以根据自己的需要进行选择... 目录方法1:集合(set)去重法(最快速)方法2:顺序遍历法(保持顺序)方法3:副本删除法(原地修改)方法4:

Python运行中频繁出现Restart提示的解决办法

《Python运行中频繁出现Restart提示的解决办法》在编程的世界里,遇到各种奇怪的问题是家常便饭,但是,当你的Python程序在运行过程中频繁出现“Restart”提示时,这可能不仅仅是令人头疼... 目录问题描述代码示例无限循环递归调用内存泄漏解决方案1. 检查代码逻辑无限循环递归调用内存泄漏2.

pytorch自动求梯度autograd的实现

《pytorch自动求梯度autograd的实现》autograd是一个自动微分引擎,它可以自动计算张量的梯度,本文主要介绍了pytorch自动求梯度autograd的实现,具有一定的参考价值,感兴趣... autograd是pytorch构建神经网络的核心。在 PyTorch 中,结合以下代码例子,当你

Python中判断对象是否为空的方法

《Python中判断对象是否为空的方法》在Python开发中,判断对象是否为“空”是高频操作,但看似简单的需求却暗藏玄机,从None到空容器,从零值到自定义对象的“假值”状态,不同场景下的“空”需要精... 目录一、python中的“空”值体系二、精准判定方法对比三、常见误区解析四、进阶处理技巧五、性能优化

使用Python构建一个Hexo博客发布工具

《使用Python构建一个Hexo博客发布工具》虽然Hexo的命令行工具非常强大,但对于日常的博客撰写和发布过程,我总觉得缺少一个直观的图形界面来简化操作,下面我们就来看看如何使用Python构建一个... 目录引言Hexo博客系统简介设计需求技术选择代码实现主框架界面设计核心功能实现1. 发布文章2. 加

SpringBoot集成Milvus实现数据增删改查功能

《SpringBoot集成Milvus实现数据增删改查功能》milvus支持的语言比较多,支持python,Java,Go,node等开发语言,本文主要介绍如何使用Java语言,采用springboo... 目录1、Milvus基本概念2、添加maven依赖3、配置yml文件4、创建MilvusClient

python logging模块详解及其日志定时清理方式

《pythonlogging模块详解及其日志定时清理方式》:本文主要介绍pythonlogging模块详解及其日志定时清理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录python logging模块及日志定时清理1.创建logger对象2.logging.basicCo

JS+HTML实现在线图片水印添加工具

《JS+HTML实现在线图片水印添加工具》在社交媒体和内容创作日益频繁的今天,如何保护原创内容、展示品牌身份成了一个不得不面对的问题,本文将实现一个完全基于HTML+CSS构建的现代化图片水印在线工具... 目录概述功能亮点使用方法技术解析延伸思考运行效果项目源码下载总结概述在社交媒体和内容创作日益频繁的

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

如何将Python彻底卸载的三种方法

《如何将Python彻底卸载的三种方法》通常我们在一些软件的使用上有碰壁,第一反应就是卸载重装,所以有小伙伴就问我Python怎么卸载才能彻底卸载干净,今天这篇文章,小编就来教大家如何彻底卸载Pyth... 目录软件卸载①方法:②方法:③方法:清理相关文件夹软件卸载①方法:首先,在安装python时,下