verilog-实现按键消抖模块

2023-10-22 09:59

本文主要是介绍verilog-实现按键消抖模块,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 1.按键消抖原理
  • 2.实现方案-状态机(Mealy型)
  • 3.Verilog代码
    • (1)高电平有效的情况
    • (2)低电平有效的情况

1.按键消抖原理

轻触按键:相当于是一种电子开关,按下时开关接通,松开时开关断开,实现原理是通过轻触按键内部的金属弹片受力弹动来实现接通和断开。
image
说明: 如上图,产生的抖动次数以及间隔时间均是不可预期的,这就需要通过滤波来消除抖动可能对外部其他设备造成的影响。一般情况下抖动的总时间会持续20ms以内。这种抖动,可以通过硬电路或者逻辑设计的方式来消除,也可以通过软件的方式完成。其中硬件电路消除抖动适用于按键数目较少的场合。

2.实现方案-状态机(Mealy型)

image

说明:

  • IDLE:时空闲状态
  • FILTER0:按下抖动滤除状态
  • DOWN:按下稳定状态
  • FILTER1:释放抖动滤除状态
  • 采用独热码编码方式,优点:电路速度快;缺点:占用资源。
    image

3.Verilog代码

**ps:**代码中涉及的脉冲边缘检测电路,可以看博主的文章:
脉冲边缘检测电路-verilog实现

(1)高电平有效的情况

高电平有效的Verilog实现
//---------------------------------------------------
//高电平有效
//输出模板  o_key_flag && !o_key_state (一个脉冲)表示按下module key1_filter_module(input                               i_clk                     ,input                               i_rstn                    ,input                               i_key                     ,output reg                          o_key_flag                ,output reg                          o_key_state                  );parameterIDEL        =  4'b0001,FILTER0     =  4'b0010,DOWN        =  4'b0100,FILTER1     =  4'b1000;reg    [3:0]   state                ;
reg    [19:0]  cnt_20ms             ;
reg            en_cnt_20ms          ;//使能计数寄存器
reg            i_key_a,i_key_b      ;
reg            key_tmp_a,key_tmp_b  ;
reg            cnt_20ms_full        ;//计数满标志信号
wire           pedge,nedge          ;//---------------跨时钟域处理,打两个拍子----------------//
always@(posedge i_clk or negedge i_rstn)if(!i_rstn)begini_key_a <= 1'b0;i_key_b <= 1'b0;endelse begini_key_a <= i_key;i_key_b <= i_key_a;end
//-------------边沿监测电路----------------------------//
always@(posedge i_clk or negedge i_rstn)if(!i_rstn)beginkey_tmp_a <= 1'b0;key_tmp_b <= 1'b0;endelse beginkey_tmp_a <= i_key_b;key_tmp_b <= key_tmp_a;endassign nedge = !key_tmp_a &  key_tmp_b  ;
assign pedge = key_tmp_a  & (!key_tmp_b);//------------------------20ms计数器------------------//
always@(posedge i_clk or negedge i_rstn)if(!i_rstn)cnt_20ms <= 20'd0;else if(en_cnt_20ms)cnt_20ms <= cnt_20ms + 1'b1;elsecnt_20ms <= 20'd0;always@(posedge i_clk or negedge i_rstn)if(!i_rstn)cnt_20ms_full <= 1'b0;else if(cnt_20ms == 999_999)cnt_20ms_full <= 1'b1;elsecnt_20ms_full <= 1'b0;//----------------fsm-----------------------------
always@(posedge i_clk or negedge i_rstn)if(!i_rstn)beginen_cnt_20ms <= 1'b0;state       <= IDEL;o_key_flag  <= 1'b0;o_key_state <= 1'b1;endelse begincase(state)IDEL :begino_key_flag <= 1'b0;if(pedge)beginstate       <= FILTER0;en_cnt_20ms <= 1'b1;endelsestate <= IDEL;endFILTER0:if(cnt_20ms_full)begino_key_flag  <= 1'b1;o_key_state <= 1'b0;en_cnt_20ms <= 1'b0;state       <= DOWN;endelse if(nedge)beginstate       <= IDEL;en_cnt_20ms <= 1'b0;endelsestate <= FILTER0;DOWN:begino_key_flag <= 1'b0;if(nedge)beginstate       <= FILTER1;en_cnt_20ms <= 1'b1;endelsestate <= DOWN;endFILTER1:if(cnt_20ms_full)begino_key_flag  <= 1'b1;o_key_state <= 1'b1;en_cnt_20ms <= 1'b0;state       <= IDEL;endelse if(pedge)beginen_cnt_20ms <= 1'b0;state       <= DOWN;endelsestate <= FILTER1;default:beginstate       <= IDEL;en_cnt_20ms <= 1'b0;o_key_flag  <= 1'b0;o_key_state <= 1'b1;endendcaseendendmodule
高电平有效的TESTBENCH
`timescale 1ns / 1psmodule tb_key1_filter_module;//portreg  i_clk  = 1      ; reg  i_rstn = 0      ;reg  i_key           ;wire o_key_flag      ;wire o_key_state     ;key1_filter_module uut (.i_clk          (i_clk       ) , .i_rstn         (i_rstn      ) , .i_key          (i_key       ) , .o_key_flag     (o_key_flag  ) ,.o_key_state    (o_key_state ));always #10 i_clk <= ~i_clk ; //50MHZinitial begin     i_key  <= 1;     #20  i_rstn  <= 1;#10_000_000;        i_key <= 0;    #1000;i_key <= 1;    #2000;i_key <= 0;    #1400;i_key <= 1;    #2600;i_key <= 0;    #1300;i_key <= 1;    #200;i_key <= 0;   #30_000_000;i_key <= 1;    #2000;i_key <= 0;    #1000;i_key <= 1;    #2600;i_key <= 0;    #1400;i_key <= 1;    #200;i_key <= 0;    #1300;i_key <= 1;   #30_000_000;end
endmodule 

(2)低电平有效的情况

低电平有效的Verilog实现
//---------------------------------------------------
//低电平有效
//输出模板  o_key_flag && !o_key_state (一个脉冲)表示按下module key0_filter_module(input                               i_clk                     ,
input                               i_rstn                    ,
input                               i_key                     ,
output reg                          o_key_flag                ,
output reg                          o_key_state                  
);parameterIDEL        =  4'b0001,FILTER0     =  4'b0010,DOWN        =  4'b0100,FILTER1     =  4'b1000;reg    [3:0]   state                ;
reg    [19:0]  cnt_20ms             ;
reg            en_cnt_20ms          ;//使能计数寄存器
reg            i_key_a,i_key_b      ;
reg            key_tmp_a,key_tmp_b  ;
reg            cnt_20ms_full        ;//计数满标志信号
wire           pedge,nedge          ;//---------------跨时钟域处理,打两个拍子----------------//
always@(posedge i_clk or negedge i_rstn)
if(!i_rstn)begini_key_a <= 1'b0;i_key_b <= 1'b0;end
else begini_key_a <= i_key;i_key_b <= i_key_a;end
//-------------边沿监测电路----------------------------//
always@(posedge i_clk or negedge i_rstn)
if(!i_rstn)beginkey_tmp_a <= 1'b0;key_tmp_b <= 1'b0;
end
else beginkey_tmp_a <= i_key_b;key_tmp_b <= key_tmp_a;
endassign nedge = !key_tmp_a &  key_tmp_b  ;
assign pedge = key_tmp_a  & (!key_tmp_b);//------------------------20ms计数器------------------//
always@(posedge i_clk or negedge i_rstn)
if(!i_rstn)cnt_20ms <= 20'd0;
else if(en_cnt_20ms)cnt_20ms <= cnt_20ms + 1'b1;
elsecnt_20ms <= 20'd0;always@(posedge i_clk or negedge i_rstn)
if(!i_rstn)cnt_20ms_full <= 1'b0;
else if(cnt_20ms == 999_999)cnt_20ms_full <= 1'b1;
elsecnt_20ms_full <= 1'b0;//----------------fsm-----------------------------
always@(posedge i_clk or negedge i_rstn)
if(!i_rstn)beginen_cnt_20ms <= 1'b0;state       <= IDEL;o_key_flag  <= 1'b0;o_key_state <= 1'b1;
end
else begincase(state)IDEL :begino_key_flag <= 1'b0;if(nedge)beginstate       <= FILTER0;en_cnt_20ms <= 1'b1;endelsestate <= IDEL;endFILTER0:if(cnt_20ms_full)begino_key_flag  <= 1'b1;o_key_state <= 1'b0;en_cnt_20ms <= 1'b0;state       <= DOWN;endelse if(pedge)beginstate       <= IDEL;en_cnt_20ms <= 1'b0;endelsestate <= FILTER0;DOWN:begino_key_flag <= 1'b0;if(pedge)beginstate       <= FILTER1;en_cnt_20ms <= 1'b1;endelsestate <= DOWN;endFILTER1:if(cnt_20ms_full)begino_key_flag  <= 1'b1;o_key_state <= 1'b1;en_cnt_20ms <= 1'b0;state       <= IDEL;endelse if(nedge)beginen_cnt_20ms <= 1'b0;state       <= DOWN;endelsestate <= FILTER1;default:beginstate       <= IDEL;en_cnt_20ms <= 1'b0;o_key_flag  <= 1'b0;o_key_state <= 1'b1;endendcase
endendmodule
低电平有效的TESTBENCH
`timescale 1ns / 1psmodule tb_key0_filter_module;//portreg  i_clk  = 0      ; reg  i_rstn = 0      ;reg  i_key           ;wire o_key_flag      ;wire o_key_state     ;key0_filter_module uut (.i_clk          (i_clk       ) , .i_rstn         (i_rstn      ) , .i_key          (i_key       ) , .o_key_flag     (o_key_flag  ) ,.o_key_state    (o_key_state ));always #10 i_clk <= ~i_clk ; //50MHZinitial begin     i_key  <= 0;     #20  i_rstn  <= 1;#10_000_000;        i_key <= 1;    #1000;i_key <= 0;    #2000;i_key <= 1;    #1400;i_key <= 0;    #2600;i_key <= 1;    #1300;i_key <= 0;    #200;i_key <= 1;   #30_000_000;i_key <= 0;    #2000;i_key <= 1;    #1000;i_key <= 0;    #2600;i_key <= 1;    #1400;i_key <= 0;    #200;i_key <= 1;    #1300;i_key <= 0;   #30_000_000;end
endmodule 

本文来自参考:小梅哥的设计方案
https://www.bilibili.com/video/BV1KE411h7AZ?p=8&vd_source=696332c534453c3966f51e8e54ca6453
本篇随笔为学习记录所用,如有侵权,请联系博主。

这篇关于verilog-实现按键消抖模块的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/260701

相关文章

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Python pyinstaller实现图形化打包工具

《Pythonpyinstaller实现图形化打包工具》:本文主要介绍一个使用PythonPYQT5制作的关于pyinstaller打包工具,代替传统的cmd黑窗口模式打包页面,实现更快捷方便的... 目录1.简介2.运行效果3.相关源码1.简介一个使用python PYQT5制作的关于pyinstall

使用Python实现大文件切片上传及断点续传的方法

《使用Python实现大文件切片上传及断点续传的方法》本文介绍了使用Python实现大文件切片上传及断点续传的方法,包括功能模块划分(获取上传文件接口状态、临时文件夹状态信息、切片上传、切片合并)、整... 目录概要整体架构流程技术细节获取上传文件状态接口获取临时文件夹状态信息接口切片上传功能文件合并功能小

python实现自动登录12306自动抢票功能

《python实现自动登录12306自动抢票功能》随着互联网技术的发展,越来越多的人选择通过网络平台购票,特别是在中国,12306作为官方火车票预订平台,承担了巨大的访问量,对于热门线路或者节假日出行... 目录一、遇到的问题?二、改进三、进阶–展望总结一、遇到的问题?1.url-正确的表头:就是首先ur

C#实现文件读写到SQLite数据库

《C#实现文件读写到SQLite数据库》这篇文章主要为大家详细介绍了使用C#将文件读写到SQLite数据库的几种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以参考一下... 目录1. 使用 BLOB 存储文件2. 存储文件路径3. 分块存储文件《文件读写到SQLite数据库China编程的方法》博客中,介绍了文

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

JAVA利用顺序表实现“杨辉三角”的思路及代码示例

《JAVA利用顺序表实现“杨辉三角”的思路及代码示例》杨辉三角形是中国古代数学的杰出研究成果之一,是我国北宋数学家贾宪于1050年首先发现并使用的,:本文主要介绍JAVA利用顺序表实现杨辉三角的思... 目录一:“杨辉三角”题目链接二:题解代码:三:题解思路:总结一:“杨辉三角”题目链接题目链接:点击这里

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一