【Redis】基础数据结构-ziplist压缩列表

2023-10-04 19:36

本文主要是介绍【Redis】基础数据结构-ziplist压缩列表,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

压缩列表

压缩列表是列表和哈希表的底层实现之一:

  • 如果一个列表只有少量数据,并且数据类型是整数或者比较短的字符串,redis底层就会使用压缩列表实现。

  • 如果一个哈希表只有少量键值对,并且每个键值对的键和值数据类型是整数或者比较短的字符串,redis底层就会使用压缩列表实现。

Redis压缩列表是由连续的内存块组成的列表,主要包含以下内容:

  • zlbytes:记录压缩列表占用的总的字节数,占用4个字节(32bits)

  • zltail:记录压缩列表的起始位置到最后一个节点的字节数,假如知道压缩列表的起始地址,只需要假设zltail记录的偏移量即可定位到压缩列表中最后一个节点的位置,占用4个字节(32bits)

  • zllen:记录了压缩列表中节点的数量,占用2个字节(16bits)

  • entry:存储数据的节点,可以有多个

  • zlend:标记压缩列表的结尾,值为255,占用1个字节(8bits)

压缩列表的创建

列表在初始化的时候会计算需要分配的内存空间大小,然后进行内存分配,之后将内存空间的最后一个字节标记为列表结尾,内存空间的大小计算方式如下:

  1. 压缩列表头大小,包括zlbytes、zltail和zllen所占用的大小:32 bits * 2 + 16 bits

  2. 压缩列表结尾大小:8bits

// 压缩列表头大小,包括zlbytes、zltail和zllen所占用的大小:32 bits * 2 + 16 bits
#define ZIPLIST_HEADER_SIZE     (sizeof(uint32_t)*2+sizeof(uint16_t))
// 压缩列表结尾大小:8bits
#define ZIPLIST_END_SIZE        (sizeof(uint8_t))
// 列表结尾标记
#define ZIP_END 255unsigned char *ziplistNew(void) {// 计算需要分配的内存大小unsigned int bytes = ZIPLIST_HEADER_SIZE+ZIPLIST_END_SIZE;// 分配内存unsigned char *zl = zmalloc(bytes);ZIPLIST_BYTES(zl) = intrev32ifbe(bytes);ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(ZIPLIST_HEADER_SIZE);ZIPLIST_LENGTH(zl) = 0;// 将内存空间的最后一个字节标记为列表结尾zl[bytes-1] = ZIP_END;return zl;
}

所以在创建之后,内存布局如下,此时压缩列表中还没有节点:

之后如果如果需要添加节点,会进行移动,为新节点的插入腾出空间,所以还是占用的连续的空间:

压缩列表节点

压缩列表的节点可以存储字符串或者整数类型的值,为了节省内存,它采用了变长的编码方式,压缩列表的节点的结构定义如下:

typedef struct zlentry {unsigned int prevrawlensize; /* 前一个节点长度编码所需要的字节数*/unsigned int prevrawlen;     /* 前一个节点的长度(占用的字节数)*/unsigned int lensize;        /* 当前节点长度编码所需要的字节数*/unsigned int len;            /* 当前节点的长度(占用的字节数)*/unsigned int headersize;     /* header的大小,headersize = prevrawlensize + lensize. */unsigned char encoding;      /* 记录了数据的类型和数据长度 */unsigned char *p;            /* 指向数据的指针 */
} zlentry;

prevrawlen:存储前一个节点的长度(占用的字节数),这样如果从后向前遍历,只需要当前节点的起始地址减去长度的偏移量prevrawlen就可以定位到上一个节点的位置,prevrawlen的长度可以是1字节或者5字节:

  • 如果前一项节点的长度小于254字节,那么prevrawlen的长度是1字节。
  • 如果前一项节点的长度大于254字节,那么prevrawlen的长度是5字节,其中第一个字节会被设置为0xFE(十进制254),之后的四个字节用于保存前一个节点的长度。

为什么没有255字节?

因为255用来标记为压缩列表的结尾。

/* 节点编码所需要的字节数 */
unsigned int zipStorePrevEntryLength(unsigned char *p, unsigned int len) {if (p == NULL) {return (len < ZIP_BIG_PREVLEN) ? 1 : sizeof(uint32_t) + 1;} else {// 判断长度是否小于254if (len < ZIP_BIG_PREVLEN) {p[0] = len;// 使用1个字节return 1;} else {return zipStorePrevEntryLengthLarge(p,len);}}
}// 节点编码所需要的字节数
int zipStorePrevEntryLengthLarge(unsigned char *p, unsigned int len) {uint32_t u32;if (p != NULL) {// 将prevrawlen的第1个字节设置为254p[0] = ZIP_BIG_PREVLEN;u32 = len;memcpy(p+1,&u32,sizeof(u32));memrev32ifbe(p+1);}// 使用5个字节return 1 + sizeof(uint32_t);
}

encoding:记录了节点的数据类型和内容的长度,因为压缩列表可以存储字符串或者整型,所以有以下两种情况:

  1. 存储内容为字符串

    C语言存储字符串底层使用的是字节数组,当内容为字符串时分为三种情况,encoding分别占用1字节、2字节、5字节,encoding占用字节大小的不同,代表存储不同长度的字节数组。

编码编码长度数据类型
00xxxxxx占用1个字节,也就是8bits长度小于等于63(2^6 - 1)字节的字节数组
01xxxxxx xxxxxxxx占用2个字节,也就是16bits长度小于等于16383(2^14 - 1)字节的字节数组
10xxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx占用5个字节,40bits长度小于等于4294967295(2^32 - 1)字节的字节数组
  1. 存储内容为整数

存储内容为整数时,encoding占用1个字节,最高位是11开头,后六位代表整数值的长度,其中当编码为1111xxxx时情况比较特殊,

后四位的值在0001和1101之间,此时直接代表数据的内容,是0到12之间的一个数字,并不是数据长度,因为它代表了数据内容,所以也不需要额外的空间存储数据内容。

编码编码长度数据类型
110000001个字节int16_t类型的整数
110100001个字节uint32_t类型的整数
111000001个字节uint64_t类型的整数
111100001个字节24位有符号整数
111111101个字节8位有符号整数
1111xxxx1个字节特殊情况,后四位的值在0001和1101之间,此时代表的是数据内容,并不是数据长度

zipStoreEntryEncoding

// 节点编码所需字节数判断
unsigned int zipStoreEntryEncoding(unsigned char *p, unsigned char encoding, unsigned int rawlen) {unsigned char len = 1, buf[5];// 如果是字符串if (ZIP_IS_STR(encoding)) {/* 根据字符串的长度判断使用几个字节数 */if (rawlen <= 0x3f) { // 小于等于63字节if (!p) return len;buf[0] = ZIP_STR_06B | rawlen;} else if (rawlen <= 0x3fff) { // 小于等于16383字节len += 1; // 使用2个字节if (!p) return len;buf[0] = ZIP_STR_14B | ((rawlen >> 8) & 0x3f);buf[1] = rawlen & 0xff;} else { // 字符串长度大于16383字节len += 4; // 使用5个字节if (!p) return len;buf[0] = ZIP_STR_32B;buf[1] = (rawlen >> 24) & 0xff;buf[2] = (rawlen >> 16) & 0xff;buf[3] = (rawlen >> 8) & 0xff;buf[4] = rawlen & 0xff;}} else {// 如果是整数,使用1个字节if (!p) return len;buf[0] = encoding;}/* 保存长度 */memcpy(p,buf,len);return len;
}
节点的插入
// 添加节点
// zl:指向压缩列表的指针
// s:数据内容
// slen:数据的长度
// where:在哪个位置添加
// 调用例子:zl = ziplistPush(zl, (unsigned char*)"foo", 3, ZIPLIST_TAIL);
unsigned char *ziplistPush(unsigned char *zl, unsigned char *s, unsigned int slen, int where) {unsigned char *p;// 判断是在头部或者尾部进行添加p = (where == ZIPLIST_HEAD) ? ZIPLIST_ENTRY_HEAD(zl) : ZIPLIST_ENTRY_END(zl);// 插入节点return __ziplistInsert(zl,p,s,slen);
}// 插入节点
// zl:指向压缩列表的指针
// p:添加的位置
// s:数据内容
// slen:数据的长度
unsigned char *__ziplistInsert(unsigned char *zl, unsigned char *p, unsigned char *s, unsigned int slen) {size_t curlen = intrev32ifbe(ZIPLIST_BYTES(zl)), reqlen, newlen;unsigned int prevlensize, prevlen = 0;size_t offset;int nextdiff = 0;unsigned char encoding = 0;long long value = 123456789; zlentry tail;// 判断要添加的位置是否是结尾处if (p[0] != ZIP_END) {// 如果不是尾部// 计算前一个节点的长度prevlenZIP_DECODE_PREVLEN(p, prevlensize, prevlen);} else { // 如果是在尾部unsigned char *ptail = ZIPLIST_ENTRY_TAIL(zl);if (ptail[0] != ZIP_END) {// 计算前一个节点的长度prevlen = zipRawEntryLengthSafe(zl, curlen, ptail);}}// 判断节点是否可以被Encodingif (zipTryEncoding(s,slen,&value,&encoding)) {// 计算将字符串转换为整数后的长度reqlen = zipIntSize(encoding);} else {// 直接使用原始长度reqlen = slen;}// reqlen用来保存当前节点所占用的长度// 加上前一个节点编码所需要的字节数reqlen += zipStorePrevEntryLength(NULL,prevlen);// 加上当前节点编码所需要的字节数reqlen += zipStoreEntryEncoding(NULL,encoding,slen);/* 这里用于判断节点加入的时候,后面的节点prevrawlen的字节数是否可以满足要插入节点的长度*/int forcelarge = 0;nextdiff = (p[0] != ZIP_END) ? zipPrevLenByteDiff(p,reqlen) : 0;if (nextdiff == -4 && reqlen < 4) {nextdiff = 0;forcelarge = 1;}offset = p-zl;newlen = curlen+reqlen+nextdiff;// 调整压缩列表的长度zl = ziplistResize(zl,newlen);p = zl+offset;// 如果p不指向链表结尾,说明新加入的节点不是最后一个if (p[0] != ZIP_END) {/* 将p指向的节点和它之后的节点向后移动,为新节点腾出空间*/memmove(p+reqlen,p-nextdiff,curlen-offset-1+nextdiff);/* 当前节点的长度编码后存储到后一个节点的prevrawlen*/if (forcelarge)zipStorePrevEntryLengthLarge(p+reqlen,reqlen);elsezipStorePrevEntryLength(p+reqlen,reqlen);/* 更新结尾的OFFSET */ZIPLIST_TAIL_OFFSET(zl) =intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+reqlen);assert(zipEntrySafe(zl, newlen, p+reqlen, &tail, 1));if (p[reqlen+tail.headersize+tail.len] != ZIP_END) {ZIPLIST_TAIL_OFFSET(zl) =intrev32ifbe(intrev32ifbe(ZIPLIST_TAIL_OFFSET(zl))+nextdiff);}} else {/* 新加入的节点是列表的最后一个节点时 */ZIPLIST_TAIL_OFFSET(zl) = intrev32ifbe(p-zl);}/* 这里判断是否需要连锁更新 */if (nextdiff != 0) {offset = p-zl;zl = __ziplistCascadeUpdate(zl,p+reqlen);p = zl+offset;}/* 插入节点*/p += zipStorePrevEntryLength(p,prevlen);p += zipStoreEntryEncoding(p,encoding,slen);if (ZIP_IS_STR(encoding)) {memcpy(p,s,slen);} else {zipSaveInteger(p,value,encoding);}// 修改压缩列表节点的数量ZIPLIST_INCR_LENGTH(zl,1);return zl;
}

连锁更新

因为压缩列表中每个节点记录了前一个节点的长度:

  • 如果前一项节点的长度小于254字节,那么prevrawlen的长度是1字节。
  • 如果前一项节点的长度大于254字节,那么prevrawlen的长度是5字节,其中第一个字节会被设置为0xFE(十进制154),之后的四个字节用于保存前一个节点的长度。

假设有一种情况,一个压缩列表中,存储了多个长度是253字节的节点,因为节点的长度都在254字节以内,所以每个节点的prevrawlen只需要1个字节去存储长度的值:

此时在列表的头部需要新增加一个节点,并且节点的长度大于254,这个时候原先的头结点entry1 prevrawlen使用1字节已经不能满足当前的情况了,必须要使用5字节存储,因此entry1的prevrawlen变成了5字节,entry1的长度也会跟着增加4个字节,已经超过了254字节,因为大于254就需要使用5个字节存储,所以entry2的prevrawlen也需要改变为5字节,后面的以此类推,引发了连锁更新,这种情况称之为连锁更新:

总结

(1)Redis压缩列表使用了一块连续的内存,来节约内存空间。

(2)压缩列表的节点可以存储字符串或者整数类型的值,它采用了变长的编码方式,根据数据类型的不同以及数据长度的不同,选择不同的编码方式,每种编码占用的字节大小不同,以此来节约内存。

(3)压缩列表的每个节点中存储了前一个节点的字节长度,如果知道某个节点的地址,可以使用地址减去字节长度定位到上一个节点,不过新增节点的时候,由于前一个节点的长度大于254使用5个字节,小于254使用1个字节存储,在一些极端的情况下由于长度的变化会引起连锁更新。

参考

黄健宏《Redis设计与实现》

极客时间 - Redis源码剖析与实战(蒋德钧)

【张铁蕾】Redis内部数据结构详解(4)——ziplist

【_HelloBug】Redis-压缩表-__ziplistInsert详解

图解Redis之数据结构篇——压缩列表

Redis版本:redis-6.2.5

这篇关于【Redis】基础数据结构-ziplist压缩列表的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/2587

相关文章

Redis在windows环境下如何启动

《Redis在windows环境下如何启动》:本文主要介绍Redis在windows环境下如何启动的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Redis在Windows环境下启动1.在redis的安装目录下2.输入·redis-server.exe

mysql的基础语句和外键查询及其语句详解(推荐)

《mysql的基础语句和外键查询及其语句详解(推荐)》:本文主要介绍mysql的基础语句和外键查询及其语句详解(推荐),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录一、mysql 基础语句1. 数据库操作 创建数据库2. 表操作 创建表3. CRUD 操作二、外键

Python基础语法中defaultdict的使用小结

《Python基础语法中defaultdict的使用小结》Python的defaultdict是collections模块中提供的一种特殊的字典类型,它与普通的字典(dict)有着相似的功能,本文主要... 目录示例1示例2python的defaultdict是collections模块中提供的一种特殊的字

Redis实现延迟任务的三种方法详解

《Redis实现延迟任务的三种方法详解》延迟任务(DelayedTask)是指在未来的某个时间点,执行相应的任务,本文为大家整理了三种常见的实现方法,感兴趣的小伙伴可以参考一下... 目录1.前言2.Redis如何实现延迟任务3.代码实现3.1. 过期键通知事件实现3.2. 使用ZSet实现延迟任务3.3

Java图片压缩三种高效压缩方案详细解析

《Java图片压缩三种高效压缩方案详细解析》图片压缩通常涉及减少图片的尺寸缩放、调整图片的质量(针对JPEG、PNG等)、使用特定的算法来减少图片的数据量等,:本文主要介绍Java图片压缩三种高效... 目录一、基于OpenCV的智能尺寸压缩技术亮点:适用场景:二、JPEG质量参数压缩关键技术:压缩效果对比

Redis分片集群的实现

《Redis分片集群的实现》Redis分片集群是一种将Redis数据库分散到多个节点上的方式,以提供更高的性能和可伸缩性,本文主要介绍了Redis分片集群的实现,具有一定的参考价值,感兴趣的可以了解一... 目录1. Redis Cluster的核心概念哈希槽(Hash Slots)主从复制与故障转移2.

Python基础文件操作方法超详细讲解(详解版)

《Python基础文件操作方法超详细讲解(详解版)》文件就是操作系统为用户或应用程序提供的一个读写硬盘的虚拟单位,文件的核心操作就是读和写,:本文主要介绍Python基础文件操作方法超详细讲解的相... 目录一、文件操作1. 文件打开与关闭1.1 打开文件1.2 关闭文件2. 访问模式及说明二、文件读写1.

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

一文详解SpringBoot响应压缩功能的配置与优化

《一文详解SpringBoot响应压缩功能的配置与优化》SpringBoot的响应压缩功能基于智能协商机制,需同时满足很多条件,本文主要为大家详细介绍了SpringBoot响应压缩功能的配置与优化,需... 目录一、核心工作机制1.1 自动协商触发条件1.2 压缩处理流程二、配置方案详解2.1 基础YAML