医学图像 | DualGAN与儿科超声心动图分割 | MICCAI

2023-10-22 02:10

本文主要是介绍医学图像 | DualGAN与儿科超声心动图分割 | MICCAI,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 文章转自微信公众号:「机器学习炼丹术」

  • 作者:炼丹兄(已授权)

  • 联系方式:微信cyx645016617(欢迎交流共同进步)

  • 论文名称:“Dual Network Generative Adversarial Networks for Pediatric Echocardiography Segmentation”

0 准备工作

0.1 生词

  • Pediatric 儿童的
  • Pediatric echocardiography 小儿超声心动图
  • CHD : congenital heart disease 先天心脏病

0.2

1 综述

为了获得高质量的分割结果,目前临床上小儿超声心动图的分割主要由超声工作者手工完成,这既费时费力,又高度依赖于超声工作者的专业水平。为了解决这些问题,本文提出了一种新的卷积神经网络(CNN)结构,称为双网络一般对抗网络(DNGAN)。DNGAN由一个产生器和两个鉴别器组成,产生器采用并行对偶网络来提取更多有用的特征以提高性能。我们使用双重鉴别器来强制生成器学习更多的空间特征,并更准确地分割左心的边缘。

2 问题提出

在这里插入图片描述
图中是儿童的心脏的左心室和左心房的分割标注label,可以发现:左心房的变化比较明显,并且内壁会存在模糊,因此目前的对于四腔的分割存在一下挑战:
(1)因为噪音和模糊出现的边界不清晰;
(2)心脏的尺寸对于不同人是不同的;
(3)每一个心动周期心房和心室的变化是不同的。

3 模型结构

在这里插入图片描述

这个DNGAN的结构如上所示:包含一个生成器和两个鉴别器。

3.1 generator

由一个U-net和FCN并行构成,分别从输入图片中提取两种特征,然后特征进行像素相乘.

FCN输出的特征图为 f 1 f_1 f1,U-net输出的特征图为 f 2 f_2 f2,那么由generator输出的图像分割结果为 F G = f 1 × f 2 F_G = f_1 \times f_2 FG=f1×f2.

3.2 discriminator

是一个六层的全卷积网络,然后分别用7,5,3作为卷积核的大小。卷积层后面跟着BN层和LeakReLU激活层。

使用的是multi-scale L1损失,类似于2014年的图像分割网络Richer conv net。

4 损失

4.1 generator损失

先回顾一下一般的GAN的损失函数:
在这里插入图片描述
在公式中:

  • x是real image
  • z是random import for generator
  • G(z)是生成的mask
  • D(x) 是判别起判断x是true的概率

再来看一下DNGAN的损失函数:
在这里插入图片描述

  • N为样本的数量;

  • x n x_n xn为某一张儿童超声心动图四腔图, y n y_n yn为对应的ground truth;

  • l m l_m lm是mean absolute error,也就是我们说的L1loss;
    在这里插入图片描述
    这个可以看到, f D ( x ) f_D(x) fD(x)是discrimintor提取的特征,L表示discrimintor的层数,所以 f D i ( x ) f_D^i(x) fDi(x)表示discrimintor第i层提取出来的特征图

  • l c o s l_{cos} lcos就是常说的cross entropy;

  • l D 2 l_{D_2} lD2是第二个discriminitor的损失函数,也比较复杂我们来看一下,这个损失函数分辨的是:输入的是生成的mask还是真实的mask

5 数据描述

  • 数据集包含87个儿童超声心动图;
  • 搜集的是0到10岁的健康的儿童,每个视频至少包含24帧和一个完成的心动周期;
  • 随机选择67个视频,抽取了1765个图片作为训练集;剩下20个视频抽取451个视频作为测试集;
  • 原始图片的分辨率是1016x708或者636x432,所有的图片经过中心crop后变成704x704和448x448;

6 总结

1, 这篇文章的结果和过程存在疑点,文章中出现一处公式的疑似符号错误。
在这里插入图片描述

2, 文章中的并没有给出第二个discrimintor的loss使用MSE和BCE的平均值的原因,不确定是否之前就有文章已经讨论过这个样做的优势。从结果来看,使用GAN的框架来训练造成的提升并不高,反而提升分割精度的重点应该是分割网络的特征融合和宽度增加。
3, 文章使用GAN应用在儿童超声心脏病上的出发点很好,希望可以帮助更多的儿童摆脱先天性心脏病的困扰。

这篇关于医学图像 | DualGAN与儿科超声心动图分割 | MICCAI的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/258429

相关文章

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求

C#中字符串分割的多种方式

《C#中字符串分割的多种方式》在C#编程语言中,字符串处理是日常开发中不可或缺的一部分,字符串分割是处理文本数据时常用的操作,它允许我们将一个长字符串分解成多个子字符串,本文给大家介绍了C#中字符串分... 目录1. 使用 string.Split2. 使用正则表达式 (Regex.Split)3. 使用

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

SAM2POINT:以zero-shot且快速的方式将任何 3D 视频分割为视频

摘要 我们介绍 SAM2POINT,这是一种采用 Segment Anything Model 2 (SAM 2) 进行零样本和快速 3D 分割的初步探索。 SAM2POINT 将任何 3D 数据解释为一系列多向视频,并利用 SAM 2 进行 3D 空间分割,无需进一步训练或 2D-3D 投影。 我们的框架支持各种提示类型,包括 3D 点、框和掩模,并且可以泛化到不同的场景,例如 3D 对象、室

Verybot之OpenCV应用一:安装与图像采集测试

在Verybot上安装OpenCV是很简单的,只需要执行:         sudo apt-get update         sudo apt-get install libopencv-dev         sudo apt-get install python-opencv         下面就对安装好的OpenCV进行一下测试,编写一个通过USB摄像头采

【python计算机视觉编程——7.图像搜索】

python计算机视觉编程——7.图像搜索 7.图像搜索7.1 基于内容的图像检索(CBIR)从文本挖掘中获取灵感——矢量空间模型(BOW表示模型)7.2 视觉单词**思想****特征提取**: 创建词汇7.3 图像索引7.3.1 建立数据库7.3.2 添加图像 7.4 在数据库中搜索图像7.4.1 利用索引获取获选图像7.4.2 用一幅图像进行查询7.4.3 确定对比基准并绘制结果 7.

【python计算机视觉编程——8.图像内容分类】

python计算机视觉编程——8.图像内容分类 8.图像内容分类8.1 K邻近分类法(KNN)8.1.1 一个简单的二维示例8.1.2 用稠密SIFT作为图像特征8.1.3 图像分类:手势识别 8.2贝叶斯分类器用PCA降维 8.3 支持向量机8.3.2 再论手势识别 8.4 光学字符识别8.4.2 选取特征8.4.3 多类支持向量机8.4.4 提取单元格并识别字符8.4.5 图像校正

HalconDotNet中的图像特征与提取详解

文章目录 简介一、边缘特征提取二、角点特征提取三、区域特征提取四、纹理特征提取五、形状特征提取 简介   图像特征提取是图像处理中的一个重要步骤,用于从图像中提取有意义的特征,以便进行进一步的分析和处理。HalconDotNet提供了多种图像特征提取方法,每种方法都有其特定的应用场景和优缺点。 一、边缘特征提取   边缘特征提取是图像处理中最基本的特征提取方法之一,通过检

超越IP-Adapter!阿里提出UniPortrait,可通过文本定制生成高保真的单人或多人图像。

阿里提出UniPortrait,能根据用户提供的文本描述,快速生成既忠实于原图又能灵活调整的个性化人像,用户甚至可以通过简单的句子来描述多个不同的人物,而不需要一一指定每个人的位置。这种设计大大简化了用户的操作,提升了个性化生成的效率和效果。 UniPortrait以统一的方式定制单 ID 和多 ID 图像,提供高保真身份保存、广泛的面部可编辑性、自由格式的文本描述,并且无需预先确定的布局。