TensorFlow学习--学习率衰减/learning rate decay

2023-10-21 22:50

本文主要是介绍TensorFlow学习--学习率衰减/learning rate decay,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

学习率衰减

学习率衰减(learning rate decay)
在训练神经网络时,使用学习率控制参数的更新速度.学习率较小时,会大大降低参数的更新速度;学习率较大时,会使搜索过程中发生震荡,导致参数在极优值附近徘徊.
为此,在训练过程中引入学习率衰减,使学习率随着训练的进行逐渐衰减.

TensorFlow中实现的学习率衰减方法:

  • tf.train.piecewise_constant 分段常数衰减
  • tf.train.inverse_time_decay 反时限衰减
  • tf.train.polynomial_decay 多项式衰减
  • tf.train.exponential_decay 指数衰减
  • tf.train.natural_exp_decay 自然指数衰减
  • tf.train.cosine_decay 余弦衰减
  • tf.train.linear_cosine_decay 线性余弦衰减
  • tf.train.noisy_linear_cosine_decay 噪声线性余弦衰减
    函数返回衰减的学习率.

分段常数衰减

tf.train.piecewise_constant() 指定间隔的分段常数.
参数:

  • x:0-D标量Tensor.
  • boundaries:边界,tensor或list.
  • values:指定定义区间的值.
  • name:操作的名称,默认为PiecewiseConstant.

分段常数衰减就是在定义好的区间上,分别设置不同的常数值,作为学习率的初始值和后续衰减的取值.

示例:

#!/usr/bin/python
# coding:utf-8# piecewise_constant 阶梯式下降法
import matplotlib.pyplot as plt
import tensorflow as tf
global_step = tf.Variable(0, name='global_step', trainable=False)
boundaries = [10, 20, 30]
learing_rates = [0.1, 0.07, 0.025, 0.0125]
y = []
N = 40
with tf.Session() as sess:sess.run(tf.global_variables_initializer())for global_step in range(N):learing_rate = tf.train.piecewise_constant(global_step, boundaries=boundaries, values=learing_rates)lr = sess.run([learing_rate])y.append(lr[0])x = range(N)
plt.plot(x, y, 'r-', linewidth=2)
plt.title('piecewise_constant')
plt.show()

这里写图片描述

指数衰减

指数衰减

tf.train.exponential_decay() 应用指数衰减的学习率.
指数衰减是最常用的衰减方法.
参数:

  • learning_rate:初始学习率.
  • global_step:用于衰减计算的全局步数,非负.用于逐步计算衰减指数.
  • decay_steps:衰减步数,必须是正值.决定衰减周期.
  • decay_rate:衰减率.
  • staircase:若为True,则以不连续的间隔衰减学习速率即阶梯型衰减(就是在一段时间内或相同的eproch内保持相同的学习率);若为False,则是标准指数型衰减.
  • name:操作的名称,默认为ExponentialDecay.(可选项)

指数衰减的学习速率计算公式为:

decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)  

优点:简单直接,收敛速度快.

示例,阶梯型衰减与指数型衰减对比:

#!/usr/bin/python
# coding:utf-8
import matplotlib.pyplot as plt
import tensorflow as tf
global_step = tf.Variable(0, name='global_step', trainable=False)y = []
z = []
N = 200
with tf.Session() as sess:sess.run(tf.global_variables_initializer())for global_step in range(N):# 阶梯型衰减learing_rate1 = tf.train.exponential_decay(learning_rate=0.5, global_step=global_step, decay_steps=10, decay_rate=0.9, staircase=True)# 标准指数型衰减learing_rate2 = tf.train.exponential_decay(learning_rate=0.5, global_step=global_step, decay_steps=10, decay_rate=0.9, staircase=False)lr1 = sess.run([learing_rate1])lr2 = sess.run([learing_rate2])y.append(lr1[0])z.append(lr2[0])x = range(N)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_ylim([0, 0.55])
plt.plot(x, y, 'r-', linewidth=2)
plt.plot(x, z, 'g-', linewidth=2)
plt.title('exponential_decay')
ax.set_xlabel('step')
ax.set_ylabel('learing rate')
plt.show()

如图,红色:阶梯型;绿色:指数型:
这里写图片描述

自然指数衰减

tf.train.natural_exp_decay()  应用自然指数衰减的学习率.
参数:

  • learning_rate:初始学习率.
  • global_step:用于衰减计算的全局步数,非负.
  • decay_steps:衰减步数.
  • decay_rate:衰减率.
  • staircase:若为True,则是离散的阶梯型衰减(就是在一段时间内或相同的eproch内保持相同的学习率);若为False,则是标准型衰减.
  • name: 操作的名称,默认为ExponentialTimeDecay.

natural_exp_decay 和 exponential_decay 形式近似,natural_exp_decay的底数是e.自然指数衰减比指数衰减要快的多,一般用于较快收敛,容易训练的网络.
自然指数衰减的学习率计算公式为:

decayed_learning_rate = learning_rate * exp(-decay_rate * global_step)

示例,指数衰减与自然指数衰减的阶梯型与指数型:

#!/usr/bin/python
# coding:utf-8import matplotlib.pyplot as plt
import tensorflow as tf
global_step = tf.Variable(0, name='global_step', trainable=False)y = []
z = []
w = []
N = 200
with tf.Session() as sess:sess.run(tf.global_variables_initializer())for global_step in range(N):# 阶梯型衰减learing_rate1 = tf.train.natural_exp_decay(learning_rate=0.5, global_step=global_step, decay_steps=10, decay_rate=0.9, staircase=True)# 标准指数型衰减learing_rate2 = tf.train.natural_exp_decay(learning_rate=0.5, global_step=global_step, decay_steps=10, decay_rate=0.9, staircase=False)# 指数衰减learing_rate3 = tf.train.exponential_decay(learning_rate=0.5, global_step=global_step, decay_steps=10, decay_rate=0.9, staircase=False)lr1 = sess.run([learing_rate1])lr2 = sess.run([learing_rate2])lr3 = sess.run([learing_rate3])y.append(lr1[0])z.append(lr2[0])w.append(lr3[0])x = range(N)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.set_ylim([0, 0.55])
plt.plot(x, y, 'r-', linewidth=2)
plt.plot(x, z, 'g-', linewidth=2)
plt.plot(x, w, 'b-', linewidth=2)
plt.title('natural_exp_decay')
ax.set_xlabel('step')
ax.set_ylabel('learing rate')
plt.show()

如图,红色:阶梯型;绿色:指数型;蓝色指数型衰减:
这里写图片描述

多项式衰减

tf.train.polynomial_decay() 应用多项式衰减的学习率.
参数:

  • learning_rate:初始学习率.
  • global_step:用于衰减计算的全局步数,非负.
  • decay_steps:衰减步数,必须是正值.
  • end_learning_rate:最低的最终学习率.
  • power:多项式的幂,默认为1.0(线性).
  • cycle:学习率下降后是否重新上升.
  • name:操作的名称,默认为PolynomialDecay。

函数使用多项式衰减,以给定的decay_steps将初始学习率(learning_rate)衰减至指定的学习率(end_learning_rate).

多项式衰减的学习率计算公式为:

global_step = min(global_step,decay_steps)
decayed_learning_rate = (learning_rate-end_learning_rate)*(1-global_step/decay_steps)^ (power)+end_learning_rate

参数cycle决定学习率是否在下降后重新上升.若cycle为True,则学习率下降后重新上升;使用decay_steps的倍数,取第一个大于global_steps的结果.

decay_steps = decay_steps*ceil(global_step/decay_steps)
decayed_learning_rate = (learning_rate-end_learning_rate)*(1-global_step/decay_steps)^ (power)+end_learning_rate

参数cycle目的:防止神经网络训练后期学习率过小导致网络一直在某个局部最小值中振荡;这样,通过增大学习率可以跳出局部极小值.

示例,学习率下降后是否重新上升对比:

#!/usr/bin/python
# coding:utf-8
# 学习率下降后是否重新上升
import matplotlib.pyplot as plt
import tensorflow as tf
y = []
z = []
N = 200
global_step = tf.Variable(0, name='global_step', trainable=False)with tf.Session() as sess:sess.run(tf.global_variables_initializer())for global_step in range(N):# cycle=Falselearing_rate1 = tf.train.polynomial_decay(learning_rate=0.1, global_step=global_step, decay_steps=50,end_learning_rate=0.01, power=0.5, cycle=False)# cycle=Truelearing_rate2 = tf.train.polynomial_decay(learning_rate=0.1, global_step=global_step, decay_steps=50,end_learning_rate=0.01, power=0.5, cycle=True)lr1 = sess.run([learing_rate1])lr2 = sess.run([learing_rate2])y.append(lr1[0])z.append(lr2[0])x = range(N)
fig = plt.figure()
ax = fig.add_subplot(111)
plt.plot(x, z, 'g-', linewidth=2)
plt.plot(x, y, 'r--', linewidth=2)
plt.title('polynomial_decay')
ax.set_xlabel('step')
ax.set_ylabel('learing rate')
plt.show()

如图,红色:下降后不再上升;绿色:下降后重新上升:
这里写图片描述

余弦衰减

余弦衰减

tf.train.cosine_decay() 将余弦衰减应用于学习率
参数:

  • learning_rate:标初始学习率.
  • global_step:用于衰减计算的全局步数.
  • decay_steps:衰减步数.
  • alpha:最小学习率(learning_rate的部分)。
  • name:操作的名称,默认为CosineDecay.

根据论文SGDR: Stochastic Gradient Descent with Warm Restarts提出.

余弦衰减的学习率计算公式为:

global_step = min(global_step, decay_steps)
cosine_decay = 0.5 * (1 + cos(pi * global_step / decay_steps))
decayed = (1 - alpha) * cosine_decay + alpha
decayed_learning_rate = learning_rate * decayed
线性余弦衰减

tf.train.linear_cosine_decay() 将线性余弦衰减应用于学习率.
参数:

  • learning_rate:标初始学习率.
  • global_step:用于衰减计算的全局步数.
  • decay_steps:衰减步数。
  • num_periods:衰减余弦部分的周期数.
  • alpha:见计算.
  • beta:见计算.
  • name:操作的名称,默认为LinearCosineDecay。

根据论文Neural Optimizer Search with Reinforcement Learning提出.

线性余弦衰减的学习率计算公式为:

global_step=min(global_step,decay_steps)
linear_decay=(decay_steps-global_step)/decay_steps)
cosine_decay = 0.5*(1+cos(pi*2*num_periods*global_step/decay_steps))
decayed=(alpha+linear_decay)*cosine_decay+beta
decayed_learning_rate=learning_rate*decayed
噪声线性余弦衰减

tf.train.noisy_linear_cosine_decay() 将噪声线性余弦衰减应用于学习率.
参数:

  • learning_rate:标初始学习率.
  • global_step:用于衰减计算的全局步数.
  • decay_steps:衰减步数.
  • initial_variance:噪声的初始方差.
  • variance_decay:衰减噪声的方差.
  • num_periods:衰减余弦部分的周期数.
  • alpha:见计算.
  • beta:见计算.
  • name:操作的名称,默认为NoisyLinearCosineDecay.

根据论文Neural Optimizer Search with Reinforcement Learning提出.在衰减过程中加入了噪声,一定程度上增加了线性余弦衰减的随机性和可能性.

噪声线性余弦衰减的学习率计算公式为:

global_step=min(global_step,decay_steps)
linear_decay=(decay_steps-global_step)/decay_steps)
cosine_decay=0.5*(1+cos(pi*2*num_periods*global_step/decay_steps))
decayed=(alpha+linear_decay+eps_t)*cosine_decay+beta
decayed_learning_rate =learning_rate*decayed

示例,线性余弦衰减与噪声线性余弦衰减:

#!/usr/bin/python
# coding:utf-8
import matplotlib.pyplot as plt
import tensorflow as tf
y = []
z = []
w = []
N = 200
global_step = tf.Variable(0, name='global_step', trainable=False)with tf.Session() as sess:sess.run(tf.global_variables_initializer())for global_step in range(N):# 余弦衰减learing_rate1 = tf.train.cosine_decay(learning_rate=0.1, global_step=global_step, decay_steps=50,alpha=0.5)# 线性余弦衰减learing_rate2 = tf.train.linear_cosine_decay(learning_rate=0.1, global_step=global_step, decay_steps=50,num_periods=0.2, alpha=0.5, beta=0.2)# 噪声线性余弦衰减learing_rate3 = tf.train.noisy_linear_cosine_decay(learning_rate=0.1, global_step=global_step, decay_steps=50,initial_variance=0.01, variance_decay=0.1, num_periods=0.2, alpha=0.5, beta=0.2)lr1 = sess.run([learing_rate1])lr2 = sess.run([learing_rate2])lr3 = sess.run([learing_rate3])y.append(lr1[0])z.append(lr2[0])w.append(lr3[0])x = range(N)
fig = plt.figure()
ax = fig.add_subplot(111)
plt.plot(x, z, 'b-', linewidth=2)
plt.plot(x, y, 'r-', linewidth=2)
plt.plot(x, w, 'g-', linewidth=2)
plt.title('cosine_decay')
ax.set_xlabel('step')
ax.set_ylabel('learing rate')
plt.show()

如图,红色:余弦衰减;蓝色:线性余弦衰减;绿色:噪声线性余弦衰减;
这里写图片描述

反时限衰减

tf.train.inverse_time_decay() 将反时限衰减应用到初始学习率.
参数:

  • learning_rate:初始学习率.
  • global_step:用于衰减计算的全局步数.
  • decay_steps:衰减步数.
  • decay_rate:衰减率.
  • staircase:是否应用离散阶梯型衰减.(否则为连续型)
  • name:操作的名称,默认为InverseTimeDecay.

该函数应用反向衰减函数提供初始学习速率.利用global_step来计算衰减的学习速率.计算公式为:

decayed_learning_rate =learning_rate/(1+decay_rate* global_step/decay_step)

若staircase为True时:

decayed_learning_rate =learning_rate/(1+decay_rate*floor(global_step/decay_step))

示例,反时限衰减的阶梯型衰减与连续型对比:

#!/usr/bin/python
# coding:utf-8import matplotlib.pyplot as plt
import tensorflow as tf
y = []
z = []
N = 200
global_step = tf.Variable(0, name='global_step', trainable=False)with tf.Session() as sess:sess.run(tf.global_variables_initializer())for global_step in range(N):# 阶梯型衰减learing_rate1 = tf.train.inverse_time_decay(learning_rate=0.1, global_step=global_step, decay_steps=20,decay_rate=0.2, staircase=True)# 连续型衰减learing_rate2 = tf.train.inverse_time_decay(learning_rate=0.1, global_step=global_step, decay_steps=20,decay_rate=0.2, staircase=False)lr1 = sess.run([learing_rate1])lr2 = sess.run([learing_rate2])y.append(lr1[0])z.append(lr2[0])x = range(N)
fig = plt.figure()
ax = fig.add_subplot(111)
plt.plot(x, z, 'r-', linewidth=2)
plt.plot(x, y, 'g-', linewidth=2)
plt.title('inverse_time_decay')
ax.set_xlabel('step')
ax.set_ylabel('learing rate')
plt.show()

如图,蓝色:阶梯型;红色:连续型:
这里写图片描述


参考:
tensorflow APIr1.6

这篇关于TensorFlow学习--学习率衰减/learning rate decay的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/257486

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识

线性代数|机器学习-P36在图中找聚类

文章目录 1. 常见图结构2. 谱聚类 感觉后面几节课的内容跨越太大,需要补充太多的知识点,教授讲得内容跨越较大,一般一节课的内容是书本上的一章节内容,所以看视频比较吃力,需要先预习课本内容后才能够很好的理解教授讲解的知识点。 1. 常见图结构 假设我们有如下图结构: Adjacency Matrix:行和列表示的是节点的位置,A[i,j]表示的第 i 个节点和第 j 个

Node.js学习记录(二)

目录 一、express 1、初识express 2、安装express 3、创建并启动web服务器 4、监听 GET&POST 请求、响应内容给客户端 5、获取URL中携带的查询参数 6、获取URL中动态参数 7、静态资源托管 二、工具nodemon 三、express路由 1、express中路由 2、路由的匹配 3、路由模块化 4、路由模块添加前缀 四、中间件