Python爬取寻医问药网得到每个疾病的诱因和诱因上下位

2023-10-21 19:40

本文主要是介绍Python爬取寻医问药网得到每个疾病的诱因和诱因上下位,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Python爬取寻医问药网得到每个疾病的诱因和诱因上下位

  • Python爬取寻医问药网得到每个疾病的诱因和诱因上下位
    • 分析流程
    • 代码
      • 导包
      • getHTMLText(url)
      • main()
      • processAPart(ch,path)
      • processAnIllness(eachUrl,path)
      • getFileName(path,soup)
      • getAppositions(soup)
      • getHypernymHyponym(soup)
      • processPTextForSubtitle(text)
      • processASubtitle(text,key)
      • processASentence(str)
      • getSentence(str,key)
      • cutToPreviousComma(str,end)
      • cutToBothComma(str,keyPos)
      • ContainsNoImpurity(string)
      • ifConcat(ch)
      • notDigit(ch)
    • 各个函数间的关系和流程图
      • 各函数间关系
      • 获取小标题
      • 获取文本中诱因上下位

Python爬取寻医问药网得到每个疾病的诱因和诱因上下位

通过爬取寻医问药网的所有疾病,获取与筛选符合条件的每个疾病病因页面下相关的小标题(即诱因小标题)以及页面中基于诱因关键字,根据关键字前的语义分析是否提取子句以及如何提取子句(即文本中的诱因上下位)。

整个过程比较简单,说白了就是if else的嵌套和对整个流程的宏观把控。其中有些像分词什么的都是用的现成的python库。
本次作业是我大二的时候第一次接触爬虫写的,推荐视频:
Python网络爬虫与信息提取 北京理工大学:嵩天
看完前面33p就可以开始了。

结果大致是这样的:
程序运行结果和原文对比声明:本博客只作学习记录与交流用,不做任何盈利用途。

分析流程

1.到寻医问药网的疾病查询页面按字母查询获取到所有疾病的分区
2.在每个字母分区的页面中获取到该字母打头的所有疾病
3.转到每个疾病的病因页面
4.对于小标题:由于疾病很多,每一页病因的代码参次不齐,因此需要分情况提取
4.1在strong、b、h3这三个标签中有小标题的情况:
4.1.1直接获取这三个标题,然后判断是否满足要求,如发病病因,发病机制等这类标题需要过滤掉
4.2整个病因页面的文本仅仅只是一个p标签的情况(此情况比较复杂):
4.2.1创建一个标志词列表(后期可以发现更新),如(一)1.(1)①等
4.2.2对于整个文本从位置0开始查找是否含有标志词中的任一个
4.2.3含有则执行提取句子操作(同时需要判断句子是否满足提取条件如3.2%这类就不提取,因为3.在这里是数字,不是标题序号),还需要进行判断提取结束位置
4.2.4将提取标志词从文本中移除,再次从文本0开始查找,重复直到文本不再含有标志序号
5.对于文本中诱因关键字的上下位:
5.1创建一个诱因关键字的列表,如引起、导致、致使等等
5.2将整个p标签的文本利用python的zhon库进行中文分句
5.3再创建一个标志列表(里面放jieba分词的词性结果是实意动词的标志,如n,v,a,nt,ns等等)
5.4分别处理中文分句得到的句子:
5.4.1如果关键词前是虚词或者‘,’,则从关键字开始判断是否到提取边界,此类情况需要提取整个句子。
5.4.2如果关键词前到标点除(即关键词所在子句中关键词前部分),含有实意动词,如动词,名词等等,则从关键字开始判断是否到提取边界,此类情况需要提取分句即可。
6.将上面两个结果进行检查后拼串并输出写入文本

代码

导包

import requests
from bs4 import BeautifulSoup
import re#正则表达式
import bs4
import zhon#中文分句
from zhon import hanzi
import jieba.posseg as pseg #词性标注
import string
import os#建文件等

getHTMLText(url)

    try:kv={'user-agent':'Mozilla/5.0'}r=requests.get(url,timeout=30,headers=kv)#伪装成浏览器r.raise_for_status()#异常处理r.encoding=r.apparent_encoding#编码设置return r.text#返回文本except:return "产生异常"

main()

main函数,依次处理每个按字母分区的疾病病因,输出并建立文件夹在G盘根目录下

def main():path='E:/数据分析与可视化/'if not os.path.exists(path):os.makedirs(path)for ch in 'abcdefghijklmnopqrstuvwxyz':try:processAPart(ch,path)except OSError:passcontinue
if __name__ == '__main__':main()

processAPart(ch,path)

处理一个字母分区

def processAPart(ch,path):url='http://jib.xywy.com/html/'+ch+'.html'r=getHTMLText(url)soup=BeautifulSoup(r,"html.parser")for li in soup.find_all('ul','ks-zm-list clearfix mt10'):if isinstance(li,bs4.element.Tag):for a in li.find_all('a'):if isinstance(a,bs4.element.Tag):eachUrl='{}{}'.format('http://jib.xywy.com/il_sii/cause/',a.attrs['href'][8:])processAnIllness(eachUrl,path)

processAnIllness(eachUrl,path)

处理一个疾病病因,输出小标题间同位关系和文本内容中诱因上下位关系

	r=getHTMLText(url)soup=BeautifulSoup(r,"html.parser")path=getFileName(path,soup)string=getAppositions(soup)string='{0}{1}{2}'.format(string,'\n',getHypernymHyponym(soup))print(string)f=open(path,"w",encoding='utf-8')f.write(string)f.close

getFileName(path,soup)

给文件命名为病的名字

    for title in soup.find_all('strong','fb db f20 fYaHei fb jib-articl-tit tc'):if isinstance(title,bs4.element.Tag):T='{}'.format(title.string) for ch in T:if ch is not ' ' and ch is not '\t' and ch is not '\n' and ch is not '//' and ch is not '\\': path='{}{}'.format(path,ch)path='{}{}'.format(path,'.txt')return path

getAppositions(soup)

得到同位关系

def getAppositions(soup):string=''for tag in soup.find_all('div','jib-articl fr f14 jib-lh-articl'):if isinstance(tag,bs4.element.Tag):#这一页的标题,xxx病因,在strong标签里for strong in tag.find_all('strong',recursive=False):#排除发病病因发病机制等字样if isinstance(tag,bs4.element.Tag) and ContainsNoImpurity(strong.string):if strong.string is not None:string='{0}{1}'.format(string,strong.string)#主要内容就在这一个p标签里for p in tag.find_all('p'):if isinstance(p,bs4.element.Tag) :#小标题在h3标签里,有的页面还在b标签里for h3 in p.find_all('h3'):if isinstance(h3,bs4.element.Tag) and  ContainsNoImpurity(h3.text):string='{0}{1}'.format(string,h3.text)for b in p.find_all('b',recursive=False):if isinstance(b,bs4.element.Tag) and ContainsNoImpurity(b.string):string='{0}{1}{2}'.format(string,'\n',b.string)if isinstance(p,bs4.element.Tag):#有的页面的小标题还在strong标签for strong in p.find_all('strong',recursive=False):if isinstance(p,bs4.element.Tag):if strong.string is not None and ContainsNoImpurity(strong.string):string='{0}{1}{2}'.format(string,'\n',strong.string)return string

getHypernymHyponym(soup)

得到诱因上下位

string=''for tag in soup.find_all('div','jib-articl fr f14 jib-lh-articl'):if isinstance(tag,bs4.element.Tag):for p in tag.find_all('p',recursive=False):rst = re.findall(zhon.hanzi.sentence, p.text)res=processPTextForSubtitle(p.text)string='{0}{1}{2}'.format(string,res,'\n')string='{0}{1}'.format(string,'\n----------------上方为诱因小标题间的同位概念,下方为诱因上下位关系--------------\n')for str in rst:res=processASentence(str)if res is not None:string='{0}{1}{2}'.format(string,res,'\n')return string

processPTextForSubtitle(text)

在p标签里的小标题

def processPTextForSubtitle(text):#尽可能多的列出来小标题关键字string=''#序号必须按这个顺序排keys=['(一)','(二)','(三)','1、','2、','3、','4、','1.','2.','3.','4.','5.','6.','7.','(1)','①','②','(2)','(3)','(4)','(5)','(6)','(7)','①','②']flag=0i=0while i < len(keys):if text.find(keys[i],0,len(text)) is not -1:#包含标志if notDigit(text[text.find(keys[i],0,len(text))+2] ):res=processASubtitle(text,keys[i])#print(res)if res is not None:string='{0}{1}{2}'.format(string,res,'\n')flag=text.find(keys[i],0,len(text))+1text='{0}{1}'.format(text[:flag-1],text[flag+1:])#把这个标志从文本中剔除i=i-1i=i+1return string

processASubtitle(text,key)

处理小标题

def processASubtitle(text,key):string=''pos=text.find(key)text=text[pos:]#print(text)for ch in text:if ifConcat(ch):string+=chelse:min=8if min>len(string):min=len(string)if ContainsNoImpurity(string[:min]):if len(string)<100:return stringelse:return string[:100]

processASentence(str)

处理分句后的句子,如果存在诱因关键词则开始提取句子

def processASentence(str):keys=['引发','引起','可导致','导致','致使','致','使','有关','因为','原因','病因','诱因','因','诱发','影响']for word in keys:if str.find(word) != -1:return getSentence(str,word)

getSentence(str,key)

对于有诱因关键词的句子,先利用jieba分词判断是否有实意词,有则提取子句,无则返回整个句子

def getSentence(str,key):part=cutToPreviousComma(str,str.find(key))words=pseg.cut(part)notionals=['n','v','a','nt','ns','nr','an','vn','vg','nz','Ng','ad','Ag','s','vd','j']#这些都是实意词的标志for word,flag in words:if flag in notionals:#前面是实词,仅提取子句return cutToBothComma(str,str.find(key))#前面是情态动词,副词,连词,介词等虚词或者标点符号,提取整个句子return str

cutToPreviousComma(str,end)

从诱因关键词往前开始截取到标点符号处,前面没有标点符号就截取到str[0]用于判断诱因关键词前面是否有虚词

def cutToPreviousComma(str,end):start=endwhile start >= 1:#是汉字if '\u4e00' <= str[start] <= '\u9fff':start=start-1else:return str[start:end]return str[start:end]#这句别忘了,因为可能key前面是标点,那样就会返回none

cutToBothComma(str,keyPos)

对于前面有实意词的情况,截取子句

start=keyPosend=keyPoswhile end < len(str):if '\u4e00' <= str[end] <= '\u9fff':end=end+1else:breakwhile start >= 1:if '\u4e00' <= str[start] <= '\u9fff':start=start-1else:breakreturn str[start:end]

ContainsNoImpurity(string)

过滤杂质,排除发病病因发病机制等字样

flags=['其他','其它','发病','病因','病理生理','剖析']for flag in flags:if string is not None:if string.find(flag) is not -1:return Falsereturn True

ifConcat(ch)

判断是否到句子截取停止标志

flags=[':',':',' ',',',',','。','\n',',']for flag in flags:if ch == flag:return Falsereturn True

notDigit(ch)

排除是数字百分比的情况

    for flag in '0123456789':if ch ==flag:return Falsereturn True

各个函数间的关系和流程图

各函数间关系

各函数间关系

获取小标题

获取小标题

获取文本中诱因上下位

获取文本中诱因上下位

这篇关于Python爬取寻医问药网得到每个疾病的诱因和诱因上下位的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/256541

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

HTML提交表单给python

python 代码 from flask import Flask, request, render_template, redirect, url_forapp = Flask(__name__)@app.route('/')def form():# 渲染表单页面return render_template('./index.html')@app.route('/submit_form',

音视频入门基础:WAV专题(10)——FFmpeg源码中计算WAV音频文件每个packet的pts、dts的实现

一、引言 从文章《音视频入门基础:WAV专题(6)——通过FFprobe显示WAV音频文件每个数据包的信息》中我们可以知道,通过FFprobe命令可以打印WAV音频文件每个packet(也称为数据包或多媒体包)的信息,这些信息包含该packet的pts、dts: 打印出来的“pts”实际是AVPacket结构体中的成员变量pts,是以AVStream->time_base为单位的显

Python QT实现A-star寻路算法

目录 1、界面使用方法 2、注意事项 3、补充说明 用Qt5搭建一个图形化测试寻路算法的测试环境。 1、界面使用方法 设定起点: 鼠标左键双击,设定红色的起点。左键双击设定起点,用红色标记。 设定终点: 鼠标右键双击,设定蓝色的终点。右键双击设定终点,用蓝色标记。 设置障碍点: 鼠标左键或者右键按着不放,拖动可以设置黑色的障碍点。按住左键或右键并拖动,设置一系列黑色障碍点

Python:豆瓣电影商业数据分析-爬取全数据【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】

**爬取豆瓣电影信息,分析近年电影行业的发展情况** 本文是完整的数据分析展现,代码有完整版,包含豆瓣电影爬取的具体方式【附带爬虫豆瓣,数据处理过程,数据分析,可视化,以及完整PPT报告】   最近MBA在学习《商业数据分析》,大实训作业给了数据要进行数据分析,所以先拿豆瓣电影练练手,网络上爬取豆瓣电影TOP250较多,但对于豆瓣电影全数据的爬取教程很少,所以我自己做一版。 目