目标检测常用的性能指标:mAP、IoU、FPS、NMS、top1,top5

2023-10-21 16:50

本文主要是介绍目标检测常用的性能指标:mAP、IoU、FPS、NMS、top1,top5,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

mAP

这里首先介绍几个常见的模型评价术语,现在假设我们的分类目标只有两类,计为正例(positive)和负例(negtive)分别是:

1)True positives(TP): 被正确地划分为正例的个数,即实际为正例且被分类器划分为正例的实例数(样本数);

2)False positives(FP): 被错误地划分为正例的个数,即实际为负例但被分类器划分为正例的实例数;

3)False negatives(FN):被错误地划分为负例的个数,即实际为正例但被分类器划分为负例的实例数;

4)True negatives(TN): 被正确地划分为负例的个数,即实际为负例且被分类器划分为负例的实例数。

P 代表precision即准确率, 计算公式为 预测样本中实际正样本数 / 所有的正样本数 即 precision=TP/(TP+FP);

R代表recall 即召回率, 计算公式为 预测样本中实际正样本数 / 预测的样本数即 Recall=TP/(TP+FN)=TP/P

一般来说,precision和recall是鱼与熊掌的关系,往往召回率越高,准确率越低

AP 即 Average Precision即平均精确度
mAP 即 Mean Average Precision即平均AP值,是对多个验证集个体求平均AP值,作为 object dection中衡量检测精度的指标。

P-R曲线
在这里插入图片描述

P-R曲线即 以 precision 和 recall 作为 纵、横轴坐标 的二维曲线。通过选取不同阈值时对应的精度和召回率画出

总体趋势,精度越高,召回越低,当召回达到1时,对应概率分数最低的正样本,这个时候正样本数量除以所有大于等于该阈值的样本数量就是最低的精度值。

另外,P-R曲线围起来的面积就是AP值,通常来说一个越好的分类器,AP值越高

总结

在目标检测中,每一类都可以根据 recall 和 precision绘制P-R曲线,AP就是该曲线下的面积,mAP就是所有类AP的平均值。

IOU(交并比)

Intersection-over-Union,是目标检测中使用的一个概念,是一种测量在特定数据集中检测相应物体准确度的一个标准。
在这里插入图片描述
IOU表示了产生的候选框(candidate bound)与原标记框(ground truth bound)的交叠率或者说重叠度,也就是它们的交集与并集的比值。相关度越高该值。最理想情况是完全重叠,即比值为1。
计算公式如下:
在这里插入图片描述

NMS(非极大抑制)

NMS即non maximum suppression即非极大抑制,顾名思义就是抑制不是极大值的元素,搜索局部的极大值。

在物体检测中,NMS 应用十分广泛,其目的是为了清除多余的框,找到最佳的物体检测的位置。

FPS

除了检测准确度,目标检测算法的另外一个重要性能指标是速度,只有速度快,才能实现实时检测,这对一些应用场景极其重要。评估速度的常用指标是每秒帧率(Frame Per Second,FPS),即每秒内可以处理的图片数量。当然要对比FPS,你需要在同一硬件上进行。另外也可以使用处理一张图片所需时间来评估检测速度,时间越短,速度越快。

top1error,top5correct

top1-----就是你预测的label取最后概率向量里面最大的那一个作为预测结果,如过你的预测结果中概率最大的那个分类正确,则预测正确。否则预测错误
top5-----就是最后概率向量最大的前五名中,只要出现了正确概率即为预测正确。否则预测错误。

这篇关于目标检测常用的性能指标:mAP、IoU、FPS、NMS、top1,top5的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/255688

相关文章

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

Linux上设置Ollama服务配置(常用环境变量)

《Linux上设置Ollama服务配置(常用环境变量)》本文主要介绍了Linux上设置Ollama服务配置(常用环境变量),Ollama提供了多种环境变量供配置,如调试模式、模型目录等,下面就来介绍一... 目录在 linux 上设置环境变量配置 OllamPOgxSRJfa手动安装安装特定版本查看日志在

Java常用注解扩展对比举例详解

《Java常用注解扩展对比举例详解》:本文主要介绍Java常用注解扩展对比的相关资料,提供了丰富的代码示例,并总结了最佳实践建议,帮助开发者更好地理解和应用这些注解,需要的朋友可以参考下... 目录一、@Controller 与 @RestController 对比二、使用 @Data 与 不使用 @Dat

Mysql中深分页的五种常用方法整理

《Mysql中深分页的五种常用方法整理》在数据量非常大的情况下,深分页查询则变得很常见,这篇文章为大家整理了5个常用的方法,文中的示例代码讲解详细,大家可以根据自己的需求进行选择... 目录方案一:延迟关联 (Deferred Join)方案二:有序唯一键分页 (Cursor-based Paginatio

Python实现常用文本内容提取

《Python实现常用文本内容提取》在日常工作和学习中,我们经常需要从PDF、Word文档中提取文本,本文将介绍如何使用Python编写一个文本内容提取工具,有需要的小伙伴可以参考下... 目录一、引言二、文本内容提取的原理三、文本内容提取的设计四、文本内容提取的实现五、完整代码示例一、引言在日常工作和学

Redis中的常用的五种数据类型详解

《Redis中的常用的五种数据类型详解》:本文主要介绍Redis中的常用的五种数据类型详解,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Redis常用的五种数据类型一、字符串(String)简介常用命令应用场景二、哈希(Hash)简介常用命令应用场景三、列表(L

python中time模块的常用方法及应用详解

《python中time模块的常用方法及应用详解》在Python开发中,时间处理是绕不开的刚需场景,从性能计时到定时任务,从日志记录到数据同步,时间模块始终是开发者最得力的工具之一,本文将通过真实案例... 目录一、时间基石:time.time()典型场景:程序性能分析进阶技巧:结合上下文管理器实现自动计时

C#中的 Dictionary常用操作

《C#中的Dictionary常用操作》C#中的DictionaryTKey,TValue是用于存储键值对集合的泛型类,允许通过键快速检索值,并且具有唯一键、动态大小和无序集合的特性,常用操作包括添... 目录基本概念Dictionary的基本结构Dictionary的主要特性Dictionary的常用操作

Python中常用的四种取整方式分享

《Python中常用的四种取整方式分享》在数据处理和数值计算中,取整操作是非常常见的需求,Python提供了多种取整方式,本文为大家整理了四种常用的方法,希望对大家有所帮助... 目录引言向零取整(Truncate)向下取整(Floor)向上取整(Ceil)四舍五入(Round)四种取整方式的对比综合示例应

C#中读取XML文件的四种常用方法

《C#中读取XML文件的四种常用方法》Xml是Internet环境中跨平台的,依赖于内容的技术,是当前处理结构化文档信息的有力工具,下面我们就来看看C#中读取XML文件的方法都有哪些吧... 目录XML简介格式C#读取XML文件方法使用XmlDocument使用XmlTextReader/XmlTextWr