坑爹的list容器size方法--为了splice居然把复杂度设计为O(N)?

2023-10-21 02:58

本文主要是介绍坑爹的list容器size方法--为了splice居然把复杂度设计为O(N)?,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 最近在做一个性能要求较高的项目,有个服务器需要处理每秒2万个udp包,每个包内有40个元素(当然这是高峰期)。服务器需要一个链表,算法中有个逻辑要把每个元素添加到链表末尾(只是这个元素对象的指针,不存在对象复制的问题),再从链表中把这些元素取出(另一个时间点)。就是一个单线程在做这件事。


既然逻辑这么简单,我自然选用了C++的标准STL容器List(Linux GNU,sgi的实现),想来如此简单的事情,不过是一次末尾插入,一次头部取出而已,就用STL的List容器吧。没有想到这是痛苦的开始。我预想中每秒处理80万元素应该是很轻松写意的,没想到每秒一千个包时服务器就顶不住了,处理算法的线程占用CPU达到百分之百,大量的包得不到及时处理而超时。由于算法较为复杂,定位这问题耗了不少时间,终于感觉到LIST容器似乎有严重性能问题。


于是干脆自己写了个简单的链表,替代了STL的容器后性能有了极大的提升。为此我特意写了个简单的程序,大致模仿我算法中的场景,程序流程如下:

每3秒中向链表中插入N个元素(指针),再把这N个元素从链表中取出释放。之后查看耗时t,如果t小于3秒,就sleep(3-t)秒,并打印出睡眠的时间。

在我的测试机上,出现了差异很大的测试结果,大约每3秒测试2万个元素时,使用STL LIST的压力程序导致CPU已经达到70%了,而使用自己写的简单链表几乎没有感觉。直到每3秒测试2000万个元素时,才导致CPU占用80%结果有一千倍的差距!这里没有对象的复制,我插入链表的都只是指针而已!

(下面附测试程序,这里只是对比两种list的性能,机器的参数并不重要。请大家注意71行代码

#include <list>
#include <sys/time.h>
#include <iostream>using namespace std;//待测试的对象,链表中的每个元素就是对象A的指针
class A {};//每3秒钟插入链表末尾/从链表首部取出的元素个数
int testPressureNum = 40000;//测试的STL链表
list<A*> testList;//自己写的链表
typedef struct
{A*	p;void* 	prev;void*	next;
} SelfListElement;SelfListElement*  myListHead;
SelfListElement*  myListTail;
int	myListSize;//向自己写的链表首部添加元素
bool add(A* packet)
{SelfListElement* ele = new SelfListElement;ele->p = packet;myListSize++;if (myListHead == NULL){myListHead = myListTail = ele;ele->prev = NULL;ele->next = NULL;return true;}ele->next = myListHead;myListHead->prev = ele;ele->prev = NULL;myListHead = ele;return true;
}
// 从自己写的链表尾部取出元素
SelfListElement* get()
{if (myListTail == NULL)return NULL;myListSize--;SelfListElement* p = myListTail;if (myListTail->prev == NULL){myListHead = myListTail = NULL;}else{myListTail = (SelfListElement*)myListTail->prev;myListTail->next = NULL;}return p;
}//从STL链表中取出元素并删除
void testDelete1()
{while (testList.size() > 0)//这行语句有严重性能问题,size的复杂度不是常量级,而是O(N),请注意!就是这里跳坑里去了{A* p = testList.back();testList.pop_back();delete p;p = NULL;}
}
//从简单链表中取出元素并删除
void testDelete2()
{do {SelfListElement* packet = myListTail;if (packet == NULL)break;packet = get();delete packet->p;delete packet;packet = NULL;} while (true);
}
//向Stl链表中添加元素
void testAdd1()
{for (int i = 0; i < testPressureNum; i++){A* p = new A();testList.push_front(p);}
}
//向简单链表中添加元素
void testAdd2()
{for (int i = 0; i < testPressureNum; i++){A* p = new A();add(p);}
}void printUsage(int argc, char**argv)
{cout<<"usage: "<<argv[0]<<" [1|2] [oneRoundPressueNum]"<<endl<<"1 means STL, 2 means simple list\noneRoundPressueNum means in 3 seconds how many elements add/del in list"<<endl;	
}int main(int argc, char** argv)
{//为方便测试可使用2个参数if (argc < 2){printUsage(argc, argv);return -1;}int type = atoi(argv[1]);if (type != 1 && type != 2){printUsage(argc, argv);return -2;}if (argc >= 2)testPressureNum = atoi(argv[2]);cout<<"every 3 seconds add/del element number is "<<testPressureNum<<endl;struct timeval time1, time2;gettimeofday(&time1, NULL);while (true){gettimeofday(&time1, NULL);if (type == 1){testAdd1();cout<<"stl list has "<<testList.size()<<" elements"<<endl;}else{testAdd2();cout<<"my list has "<<myListSize<<" elements"<<endl;}//每3秒一个周期gettimeofday(&time2, NULL);unsigned long interval = 1000000*(time2.tv_sec-time1.tv_sec)+time2.tv_usec-time1.tv_usec;if (interval < 3000000){cout<<"after add sleep "<<3000000-interval<<" usec"<<endl;usleep(3000000-interval);}elsecout<<"add cost time too much"<<interval<<endl;gettimeofday(&time1, NULL);if (type == 1){testDelete1();cout<<"stl list has "<<testList.size()<<" elements"<<endl;}else{testDelete2();cout<<"my list has "<<myListSize<<" elements"<<endl;}//每3秒一个周期gettimeofday(&time2, NULL);interval = 1000000*(time2.tv_sec-time1.tv_sec)+time2.tv_usec-time1.tv_usec;if (interval < 3000000){cout<<"after delete sleep "<<3000000-interval<<" usec"<<endl;usleep(3000000-interval);}elsecout<<"delete cost time too much"<<interval<<endl;}return 0;}

一千倍的性能差距太夸张了。究竟是什么原因导致STL性能这么差呢?之前对在一些性能要求高的场景下我没怎么用过STL容器,对它还不够熟悉。这篇博客发出后, 陈硕帮忙指出原来是第71行的size()方法出了问题!   将size()方法改为 empty()方法后,list性能有了大幅度提高,当然与上面自己写的链表相比还有差距,大概自写链表性能比STL的list还要高出70%左右!
 

我很好奇究竟size()方法干了些什么?看看它的实现!(STL的代码我下的是sgi 3.3版本)

  size_type size() const {size_type __result = 0;distance(begin(), end(), __result);return __result;}

原来这个size()方法并不像自己写的链表那样,用一个变量来存储着链表的长度,而是去调用了distance方法来获取长度。那么这个distance方法又做了些什么呢?

template <class _InputIterator, class _Distance>
inline void distance(_InputIterator __first, _InputIterator __last, _Distance& __n)
{__STL_REQUIRES(_InputIterator, _InputIterator);__distance(__first, __last, __n, iterator_category(__first));
}

又封了一层__distance,看看它又做了什么?

template <class _InputIterator>
inline typename iterator_traits<_InputIterator>::difference_type
__distance(_InputIterator __first, _InputIterator __last, input_iterator_tag)
{typename iterator_traits<_InputIterator>::difference_type __n = 0;while (__first != __last) {++__first; ++__n;}return __n;
}

原来是遍历!为什么获得链表长度必须要遍历全部的链表元素才能获得,而不是用一个变量来表示呢?sgi设计list的思路何以如此与众不同呢(话说微软的STL实现就没有这个SIZE方法的效率问题)?

看看作者自己的解释:http://home.roadrunner.com/~hinnant/On_list_size.html

开篇点题,原来作者是为了

splice(iterator position, list& x, iterator first, iterator last);
方法所取的折衷,为了它的实现而把size方法设计成了O(N)。
splice方法就是为了把链表A中的一些元素直接串联到链表B中,如果size()设计为O(1)复杂度,那么做splice时就需要遍历first和last间的长度(然后把链表A保存的链表长度减去first和last(待移动的元素)之间的长度)!于是作者考虑到size方法设计为O(N),就无需在splice方法执行时做遍历了!
看看splice的实现:
  void splice(iterator __position, list&, iterator __first, iterator __last) {if (__first != __last) this->transfer(__position, __first, __last);}

再看看transfer干了些什么:
  void transfer(iterator __position, iterator __first, iterator __last) {if (__position != __last) {// Remove [first, last) from its old position.__last._M_node->_M_prev->_M_next     = __position._M_node;__first._M_node->_M_prev->_M_next    = __last._M_node;__position._M_node->_M_prev->_M_next = __first._M_node; // Splice [first, last) into its new position._List_node_base* __tmp      = __position._M_node->_M_prev;__position._M_node->_M_prev = __last._M_node->_M_prev;__last._M_node->_M_prev     = __first._M_node->_M_prev; __first._M_node->_M_prev    = __tmp;}}

作者确实是考虑splice执行时,不用再做遍历,而是仅仅移动几个指针就可以了,因此牺牲了size的效率!

怎么评价这种设计呢?作者的出发点是好的,但是,毕竟绝大多数程序员都会潜意识认为 size方法的复杂度是常量级的,同时size方法也是最常用的!这个确实是作者在给我们挖坑哈!

这个例子真是告诉我们,必须谨慎使用第三方软件,特别是对它有较高的要求时,务必对将要使用它的所有方法都有足够的了解,不是满足于它能做什么,还必须要知道它怎么做到的,否则,还是老老实实用自己熟悉的工具吧。




这篇关于坑爹的list容器size方法--为了splice居然把复杂度设计为O(N)?的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/251468

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Git中恢复已删除分支的几种方法

《Git中恢复已删除分支的几种方法》:本文主要介绍在Git中恢复已删除分支的几种方法,包括查找提交记录、恢复分支、推送恢复的分支等步骤,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录1. 恢复本地删除的分支场景方法2. 恢复远程删除的分支场景方法3. 恢复未推送的本地删除分支场景方法4. 恢复

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

Window Server2016加入AD域的方法步骤

《WindowServer2016加入AD域的方法步骤》:本文主要介绍WindowServer2016加入AD域的方法步骤,包括配置DNS、检测ping通、更改计算机域、输入账号密码、重启服务... 目录一、 准备条件二、配置ServerB加入ServerA的AD域(test.ly)三、查看加入AD域后的变

Window Server2016 AD域的创建的方法步骤

《WindowServer2016AD域的创建的方法步骤》本文主要介绍了WindowServer2016AD域的创建的方法步骤,文中通过图文介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、准备条件二、在ServerA服务器中常见AD域管理器:三、创建AD域,域地址为“test.ly”

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

Python中使用defaultdict和Counter的方法

《Python中使用defaultdict和Counter的方法》本文深入探讨了Python中的两个强大工具——defaultdict和Counter,并详细介绍了它们的工作原理、应用场景以及在实际编... 目录引言defaultdict的深入应用什么是defaultdictdefaultdict的工作原理

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写

Spring核心思想之浅谈IoC容器与依赖倒置(DI)

《Spring核心思想之浅谈IoC容器与依赖倒置(DI)》文章介绍了Spring的IoC和DI机制,以及MyBatis的动态代理,通过注解和反射,Spring能够自动管理对象的创建和依赖注入,而MyB... 目录一、控制反转 IoC二、依赖倒置 DI1. 详细概念2. Spring 中 DI 的实现原理三、