Congruence relation 同余关系

2023-10-20 17:59

本文主要是介绍Congruence relation 同余关系,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

https://en.wikipedia.org/wiki/Congruence_relation

 

https://zh.wikipedia.org/wiki/%E5%90%8C%E9%A4%98%E9%97%9C%E4%BF%82

 

在数学特别是抽象代数中,同余关系或简称同余是相容于某个代数运算的等价关系。

目录

  • 1 模算术
  • 2 线性代数
  • 3 泛代数
  • 4 群的同余、正规子群和理想
    • 4.1 环理想和一般情况的核
  • 5 参见
  • 6 引用

模算术

元型例子是模算术:对于一个正整数n,两个整数ab被称为同余模n,如果a − b整除于n(还有一个等价的条件是它们除以n得出同样的余数)。

例如,5和11同余模3:

11 ≡ 5 (mod 3)

因为11 − 5得出6,它整除于3。或者等价的说,这两个数除以3得到相同的余数:

11 = 3×3 + 2
5 = 1×3 + 2

如果 a 1 ≡ b 1 ( mod n ) {\displaystyle a_{1}\equiv b_{1}{\pmod {n}}} {\displaystyle a_{1}\equiv b_{1}{\pmod {n}}}并且 a 2 ≡ b 2 ( mod n ) {\displaystyle a_{2}\equiv b_{2}{\pmod {n}}} {\displaystyle a_{2}\equiv b_{2}{\pmod {n}}},则 a 1 + a 2 ≡ b 1 + b 2 ( mod n ) {\displaystyle a_{1}+a_{2}\equiv b_{1}+b_{2}{\pmod {n}}} {\displaystyle a_{1}+a_{2}\equiv b_{1}+b_{2}{\pmod {n}}}并且 a 1 a 2 ≡ b 1 b 2 ( mod n ) {\displaystyle a_{1}a_{2}\equiv b_{1}b_{2}{\pmod {n}}} {\displaystyle a_{1}a_{2}\equiv b_{1}b_{2}{\pmod {n}}}。这把同余(mod n)变成了在所有整数的环上的一个等价。

线性代数

两个实数矩阵AB被称为合同的,如果存在可逆实数矩阵P使得

P ⊤ A P = B {\displaystyle P^{\top }AP=B} {\displaystyle P^{\top }AP=B}

对称矩阵有实数特征值。对称矩阵的“惯性”是由正特征值的数目、零特征值的数目和负特征值的数目组成的三元组。Sylvester惯性定律声称两个对称实数矩阵是合同的,当且仅当它们有相同的惯性。所以,全等变换可以改变矩阵的特征值但不能改变特征值的符号。

对于复数矩阵,必须区分“T合同”(ABT合同,如果有可逆矩阵P使得PTAP = B)和“*合同”(AB是*合同,如果有可逆矩阵P使得P*AP = B)。

泛代数

想法是推广到泛代数中:代数A上的同余关系是直积A×A的子集,它既是在A上的等价关系又是A×A的子代数。

同态的核总是同余。实际上,所有同余引起自核。对于给定在A上的同余~,等价类的集合A/~可以自然的方式给出自代数的结构商代数。映射所有A的元素到它的等价类的函数是同态,这个同态的核是~。

在一个代数上的所有同余关系的格是代数格。

群的同余、正规子群和理想

在群的特殊情况下,同余关系可以用基本术语描述为:如果G是群(带有单位元e)并且~是在G上的二元关系,则~是同余只要:

  1. 给定G的任何元素aa ~ a自反关系)。
  2. 给定G任何的元素ab,如果a ~ b,则b ~ a对称关系)。
  3. 给定G的任何元素a,bc,如果a ~ b 并且b ~ c,则a ~ c传递关系)。
  4. 给定G的任何元素a,a',bb' ,如果a ~ a' 并且b ~ b' ,则a * b ~ a' * b'
  5. 给定G的任何元素aa' ,如果a ~ a' ,则a−1 ~ a' −1(这个条件可以从其他四个条件证明,所以严格上是冗余的)。

条件1, 2和3声称~是等价关系。

同余~完全确定自G的同余于单位元的那些元素的集合{aG : a ~ e},而这个集合是正规子群。特别是,a ~ b当且仅当b−1 * a ~ e。所以替代谈论在群上同余,人们通常以正规子群的方式谈论它们;事实上,所有同余都唯一的对应于G的某个正规子群。

环理想和一般情况的核

类似的技巧允许谈论环中的核为理想来替代同余关系,在模理论中为子模来替代同余关系。

这个技巧不适用于幺半群,所以同余关系的研究在幺半群理论扮演更中心的角色。

 

=============================

同余运算及其基本性质

    100除以7的余数是2,意思就是说把100个东西七个七个分成一组的话最后还剩2个。余数有一个严格的定义:假如被除数是a,除数是 b(假设它们均为正整数),那么我们总能够找到一个小于b的自然数r和一个整数m,使得a=bm+r。这个r就是a除以b的余数,m被称作商。我们经常用 mod来表示取余,a除以b余r就写成a mod b = r。
    如果两个数a和b之差能被m整除,那么我们就说a和b对模数m同余(关于 m同余)。比如,100-60除以8正好除尽,我们就说100和60对于模数8同余。它的另一层含义就是说,100和60除以8的余数相同。a和b对m同 余,我们记作a≡b(mod m)。比如,刚才的例子可以写成100≡60(mod 8)。你会发现这种记号到处都在用,比如和数论相关的书中就经常把a mod 3 = 1写作a≡1(mod 3)。
    之所以把同余当作一种运算,是因为同余满足运算的诸多性质。比如,同余满足等价关系。具体地说,它满足自反性(一个数永远和自己同余)、对称性(a和b同余,b和a也就同余)和传递性(a和b同余,b和c同余可以推出a和c同余)。这三个性质都是显然的。
    同 余运算里还有稍微复杂一些的性质。比如,同余运算和整数加减法一样满足“等量加等量,其和不变”。小学我们就知道,等式两边可以同时加上一个相等的数。例 如,a=b可以推出a+100=b+100。这样的性质在同余运算中也有:对于同一个模数m,如果a和b同余,x和y同余,那么a+x和b+y也同余。在 我看来,这个结论几乎是显然的。当然,我们也可以严格证明这个定理。这个定理对减法同样有效。

    性质:如果a≡b(mod m),x≡y(mod m),则a+x≡b+y(mod m)。
    证 明:条件告诉我们,可以找到p和q使得a-mp = b-mq,也存在r和s使得x-mr = y-ms。于是a-mp + x-mr = b-mq + y-ms,即a+x-m(p+r) = b+y-m(q+s),这就告诉我们a+x和b+y除以m的余数相同。

    容易想到,两个同余式对应相乘,同余式两边仍然相等:
    如果a≡b(mod m),x≡y(mod m),则ax≡by(mod m)。
    证明:条件告诉我们,a-mp = b-mq,x-mr = y-ms。于是(a-mp)(x-mr) = (b-mq)(y-ms),等式两边分别展开后必然是ax-m(…) = by-m(…)的形式,这就说明ax≡by(mod m)。

    现在你知道为什么有的题要叫你“输出答案mod xxxxx的结果”了吧,那是为了避免高精度运算,因为这里的结论告诉我们在运算过程中边算边mod和 算完后再mod的结果一样。假如a是一个很大的数,令b=a mod m,那么(a * 100) mod m和(b * 100) mod m的结果是完全一样的,这相当于是在a≡b (mod m)的两边同时乘以100。这些结论其实都很显然,因为同余运算只关心余数(不关心“整的部分”),完全可以每一次运算后都只保留余数。因此,整个运算过 程中参与运算的数都不超过m,避免了高精度的出现。

    在证明Fermat小定理时,我们用到了这样一个定理:
    如果ac≡bc(mod m),且c和m互质,则a≡b(mod m) (就是说同余式两边可以同时除以一个和模数互质的数)。
    证明:条件告诉我们,ac-mp = bc-mq,移项可得ac-bc = mp-mq,也就是说(a-b)c = m(p-q)。这表明,(a-b)c里需要含有因子m,但c和m互质,因此只有可能是a-b被m整除,也即a≡b(mod m)。

    可能以后还要用到更多的定理,到时候在这里更新。

Matrix67原创
转贴请注明出处

 

===================================

https://market.cloud.edu.tw/content/senior/math/tn_t2/math05/math_magic/1/1-2.htm

 

 

 

 

转载于:https://www.cnblogs.com/sddai/p/5664124.html

这篇关于Congruence relation 同余关系的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/248747

相关文章

POJ1269 判断2条直线的位置关系

题目大意:给两个点能够确定一条直线,题目给出两条直线(由4个点确定),要求判断出这两条直线的关系:平行,同线,相交。如果相交还要求出交点坐标。 解题思路: 先判断两条直线p1p2, q1q2是否共线, 如果不是,再判断 直线 是否平行, 如果还不是, 则两直线相交。  判断共线:  p1p2q1 共线 且 p1p2q2 共线 ,共线用叉乘为 0  来判断,  判断 平行:  p1p

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

读软件设计的要素04概念的关系

1. 概念的关系 1.1. 概念是独立的,彼此间无须相互依赖 1.1.1. 一个概念是应该独立地被理解、设计和实现的 1.1.2. 独立性是概念的简单性和可重用性的关键 1.2. 软件存在依赖性 1.2.1. 不是说一个概念需要依赖另一个概念才能正确运行 1.2.2. 只有当一个概念存在时,包含另一个概念才有意义 1.3. 概念依赖关系图简要概括了软件的概念和概念存在的理

数据依赖基础入门:函数依赖与数据库设计的关系

在数据库设计中,数据依赖 是一个重要的概念,它直接影响到数据库的结构和性能。函数依赖 作为数据依赖的一种,是规范化理论的基础,对数据库设计起着至关重要的作用。如果你是一名数据库设计的初学者,这篇文章将帮助你理解函数依赖及其在数据库设计中的应用。 什么是数据依赖? 数据依赖 是指同一关系中属性间的相互依赖和制约关系,它是数据库设计中语义的体现。在现实世界中,数据之间往往存在某种依赖关系,而这

c++ 和C语言的兼容性关系

C++ 和 C 语言有很高的兼容性,但也存在一些差异和限制。下面是它们的兼容性关系的详细介绍: 兼容性 C++ 是 C 的超集: C++ 语言设计为兼容 C 语言的语法和功能,大部分 C 代码可以在 C++ 编译器中编译运行。 标准库兼容性: C++ 标准库包含了 C 标准库的内容,如 stdio.h、stdlib.h、string.h 等头文件,但 C++ 的标准库也提供了额外的功能,如

七、Maven继承和聚合关系、及Maven的仓库及查找顺序

1.继承   2.聚合   3.Maven的仓库及查找顺序

file-max与ulimit的关系与差别

http://zhangxugg-163-com.iteye.com/blog/1108402 http://ilikedo.iteye.com/blog/1554822

【编程底层原理】方法区、永久代和元空间之间的关系

Java虚拟机(JVM)中的内存布局经历了几个版本的变更,其中方法区、永久代和元空间是这些变更中的关键概念。以下是它们之间的关系: 一、方法区: 1、方法区是JVM规范中定义的一个概念,它用于存储类信息、常量、静态变量、即时编译器编译后的代码等数据。 3、它是JVM运行时数据区的一部分,与堆内存一样,是所有线程共享的内存区域。 二、永久代(PermGen): 1、在Java SE 7之前,

笔记整理—内核!启动!—kernel部分(1)驱动与内核的关系

首先,恭喜完成了uboot部分的内容整理,其次补充一点,uboot第一部分和第二部分的工作不是一定的,在不同的版本中,可能这个初始化早一点,那个的又放在了第二部分,版本不同,造成的工作顺序不同,但终归是要完成基本内容初始化并传参给kernel的。         那么至于驱动与内核的关系,用一张图来说明最适合不过:         驱动位于OS层的中下层与硬件相接。驱动是内

一、关系模型和关系代数,《数据库系统概念》,原书第7版

文章目录 @[toc]一、引言1.1 什么是数据库1.2 数据完整性1.3 数据库的操作1.4 数据库的持久性1.5 数据库管理系统1.6 数据模型1.7 早期DBMS 二、关系模型2.1 什么是关系模型2.2 关系数据库的结构2.3 键2.4 约束2.5 数据操纵语言(DML)2.6 关系代数2.6.1 选择运算2.6.2 投影运算2.6.3 合并运算2.6.4 交运算2.6.5 差运算2.