随机森林应用案例 —— otto产品分类

2023-10-20 17:50

本文主要是介绍随机森林应用案例 —— otto产品分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

otto产品分类

  • 1 案例背景
  • 2 数据集介绍
  • 3 评分标准
  • 4 流程实现
    • 4.1 获取数据集
    • 4.2 数据基本处理
    • 4.3 模型训练
    • 4.4 模型评估
    • 4.5 模型调优
    • 4.6 生成提交数据

1 案例背景

奥托集团是世界上最大的电子商务公司之一,在20多个国家设有子公司。该公司每天都在世界各地销售数百万种产品,所以对其产品根据性能合理的分类非常重要。

不过,在实际工作中,工作人员发现,许多相同的产品得到了不同的分类。本案例要求,你对奥拓集团的产品进行正确的分类。尽可能的提供分类的准确性。

2 数据集介绍

本案例中,数据集包含大约200,000种产品的93个特征。其目的是建立一个能够区分otto公司主要产品类别的预测模型。所有产品共被分成九个类别(例如时装,电子产品等)
在这里插入图片描述

  • id - 产品id
  • feat_1, feat_2, …, feat_93 - 产品的各个特征
  • target - 产品被划分的类别

数据集:https://www.kaggle.com/c/otto-group-product-classification-challenge/overview

3 评分标准

在这里插入图片描述

4 流程实现

4.1 获取数据集

import pandas as pd
import numpy as np
import matplotlib.pyplot as pltdata = pd.read_csv("./Data/otto/train.csv")
data.head()

在这里插入图片描述
查看数据分布

import seaborn as snssns.countplot(data.target)
plt.show()

在这里插入图片描述
由上图可以看出,该数据类别不均衡,因数据量庞大,采用随机欠采样进行处理

4.2 数据基本处理

(1)确定特征值和标签值

# 采用随机欠采样之前需要确定数据的特征值和标签值
y=data["target"]
x=data.drop(["id","target"],axis=1)

(2)随机欠采样处理

from imblearn.under_sampling import RandomUnderSamplerrus = RandomUnderSampler()
x_resampled,y_resampled = rus.fit_resample(x,y)

查看欠采样后的数据形状

x.shape,y.shape
# ((61878, 93), (61878,))
x_resampled.shape,y_resampled.shape
# ((17361, 93), (17361,))

查看数据经过欠采样之后类别是否平衡

sns.countplot(y_resampled)
plt.show()

在这里插入图片描述

(3)把标签值转换为数字

y_resampled

在这里插入图片描述

from sklearn.preprocessing import LabelEncoderle = LabelEncoder()
y_resampled = le.fit_transform(y_resampled)
y_resampled

在这里插入图片描述
(4)分割数据

from sklearn.model_selection import train_test_splitx_train,x_test,y_train,y_test = train_test_split(x_resampled,y_resampled,test_size=0.2)

4.3 模型训练

from sklearn.ensemble import RandomForestClassifierestimator = RandomForestClassifier(oob_score=True)
estimator.fit(x_train,y_train)

4.4 模型评估

本题要求使用logloss进行模型评估

y_pre = estimator.predict(x_test)
y_test,y_pre

在这里插入图片描述

需要注意的是:logloss在使用过程中,必须要求将输出用one-hot表示

from sklearn.preprocessing import OneHotEncoderone_hot = OneHotEncoder(sparse=False)
y_pre = one_hot.fit_transform(y_pre.reshape(-1,1))
y_test = one_hot.fit_transform(y_test.reshape(-1,1))
y_test,y_pre

在这里插入图片描述

from sklearn.metrics import log_losslog_loss(y_test,y_pre,eps=1e-15,normalize=True)
# 7.637713870225003

改变预测值的输出模式,让输出结果为可能性的百分占比,降低logloss值

y_pre_proba = estimator.predict_proba(x_test)
y_pre_proba

在这里插入图片描述

log_loss(y_test,y_pre_proba,eps=1e-15,normalize=True)
# 0.7611795612521034

由此可见,log_loss值下降了许多

4.5 模型调优

(1)确定最优的n_estimators

# 确定n_estimators的取值范围
tuned_parameters = range(10,200,10)# 创建添加accuracy的一个numpy
accuracy_t = np.zeros(len(tuned_parameters)) # 创建添加error的一个numpy
error_t = np.zeros(len(tuned_parameters)) # 调优过程实现
for i,one_parameter in enumerate(tuned_parameters):estimator = RandomForestClassifier(n_estimators=one_parameter,max_depth=10,max_features=10,min_samples_leaf=10,oob_score=True,random_state=0,n_jobs=-1)estimator.fit(x_train,y_train)# 输出accuracyaccuracy_t[i] = estimator.oob_score_# 输出log_lossy_pre = estimator.predict_proba(x_test)error_t[i] = log_loss(y_test,y_pre,eps=1e-15,normalize=True)# 优化结果过程可视化 
fig,axes = plt.subplots(nrows=1,ncols=2,figsize=(20,4),dpi=100)
axes[0].plot(tuned_parameters,accuracy_t)
axes[1].plot(tuned_parameters,error_t)axes[0].set_xlabel("n_estimators")
axes[0].set_ylabel("accuracy_t")axes[1].set_xlabel("n_estimators")
axes[1].set_ylabel("error_t")axes[0].grid()
axes[1].grid()

在这里插入图片描述
经过图像展示,最后确定n_estimators=175时,效果不错

(2)确定最优的max_depth

# 确定max_depth的取值范围
tuned_parameters = range(10,100,10)# 创建添加accuracy的一个numpy
accuracy_t = np.zeros(len(tuned_parameters)) # 创建添加error的一个numpy
error_t = np.zeros(len(tuned_parameters)) # 调优过程实现
for i,one_parameter in enumerate(tuned_parameters):estimator = RandomForestClassifier(n_estimators=175,max_depth=one_parameter,max_features=10,min_samples_leaf=10,oob_score=True,random_state=0,n_jobs=-1)estimator.fit(x_train,y_train)# 输出accuracyaccuracy_t[i] = estimator.oob_score_# 输出log_lossy_pre = estimator.predict_proba(x_test)error_t[i] = log_loss(y_test,y_pre,eps=1e-15,normalize=True)# 优化结果过程可视化 
fig,axes = plt.subplots(nrows=1,ncols=2,figsize=(20,4),dpi=100)
axes[0].plot(tuned_parameters,accuracy_t)
axes[1].plot(tuned_parameters,error_t)axes[0].set_xlabel("max_depth")
axes[0].set_ylabel("accuracy_t")axes[1].set_xlabel("max_depth")
axes[1].set_ylabel("error_t")axes[0].grid()
axes[1].grid()

在这里插入图片描述
经过图像展示,最后确定max_depth=30时,效果不错

(3)确定最优的max_features

# 确定max_features取值范围
tuned_parameters = range(5,40,5)# 创建添加accuracy的一个numpy
accuracy_t = np.zeros(len(tuned_parameters)) # 创建添加error的一个numpy
error_t = np.zeros(len(tuned_parameters)) # 调优过程实现
for i,one_parameter in enumerate(tuned_parameters):estimator = RandomForestClassifier(n_estimators=175,max_depth=30,max_features=one_parameter,min_samples_leaf=10,oob_score=True,random_state=0,n_jobs=-1)estimator.fit(x_train,y_train)# 输出accuracyaccuracy_t[i] = estimator.oob_score_# 输出log_lossy_pre = estimator.predict_proba(x_test)error_t[i] = log_loss(y_test,y_pre,eps=1e-15,normalize=True)# 优化结果过程可视化
fig,axes = plt.subplots(nrows=1,ncols=2,figsize=(20,4),dpi=100)
axes[0].plot(tuned_parameters,accuracy_t)
axes[1].plot(tuned_parameters,error_t)axes[0].set_xlabel("max_features")
axes[0].set_ylabel("accuracy_t")axes[1].set_xlabel("max_features")
axes[1].set_ylabel("error_t")axes[0].grid()
axes[1].grid()

在这里插入图片描述
经过图像展示,最后确定max_features=15时,效果不错

(4)确定最优的min_samples_leaf

# 确定n_estimators的取值范围
tuned_parameters = range(1,10,2)# 创建添加accuracy的一个numpy
accuracy_t = np.zeros(len(tuned_parameters)) # 创建添加error的一个numpy
error_t = np.zeros(len(tuned_parameters)) # 调优过程实现
for i,one_parameter in enumerate(tuned_parameters):estimator = RandomForestClassifier(n_estimators=175,max_depth=30,max_features=15,min_samples_leaf=one_parameter,oob_score=True,random_state=0,n_jobs=-1)estimator.fit(x_train,y_train)# 输出accuracyaccuracy_t[i] = estimator.oob_score_# 输出log_lossy_pre = estimator.predict_proba(x_test)error_t[i] = log_loss(y_test,y_pre,eps=1e-15,normalize=True)# 优化结果过程可视化
fig,axes = plt.subplots(nrows=1,ncols=2,figsize=(20,4),dpi=100)
axes[0].plot(tuned_parameters,accuracy_t)
axes[1].plot(tuned_parameters,error_t)axes[0].set_xlabel("min_samples_leaf")
axes[0].set_ylabel("accuracy_t")axes[1].set_xlabel("min_samples_leaf")
axes[1].set_ylabel("error_t")axes[0].grid()
axes[1].grid()

在这里插入图片描述
经过图像展示,最后确定min_samples_leaf=1时,效果不错

(5)确定最优模型

estimator = RandomForestClassifier(n_estimators=175,max_depth=30,max_features=15,min_samples_leaf=1,oob_score=True,random_state=0,n_jobs=-1)
estimator.fit(x_train,y_train)
y_pre_proba = estimator.predict_proba(x_test)
log_loss(y_test,y_pre_proba)
# 0.7413651159154644

4.6 生成提交数据

test_data = pd.read_csv("./Data/otto/test.csv")
test_data.head()

在这里插入图片描述

注意:测试集是没有目标值的

为了便于模型预测,删去 id 列,仅保留特征列

test_data_drop_id = test_data.drop("id",axis=1)
test_data_drop_id.head()

在这里插入图片描述

y_pre_test = estimator.predict_proba(test_data_drop_id)
y_pre_test

在这里插入图片描述
按要求生成列名

result_data = pd.DataFrame(y_pre_test,columns=["Class_"+str(i) for i in range(1,10)])
result_data.head()

在这里插入图片描述
在第一列添加 id 列

result_data.insert(loc=0,column="id",value=test_data.id)
result_data.head()

在这里插入图片描述
生成提交数据的csv文件

result_data.to_csv("./Data/otto/Submission.csv",index=False)

这篇关于随机森林应用案例 —— otto产品分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/248701

相关文章

PyTorch核心方法之state_dict()、parameters()参数打印与应用案例

《PyTorch核心方法之state_dict()、parameters()参数打印与应用案例》PyTorch是一个流行的开源深度学习框架,提供了灵活且高效的方式来训练和部署神经网络,这篇文章主要介绍... 目录前言模型案例A. state_dict()方法验证B. parameters()C. 模型结构冻

线程池ThreadPoolExecutor应用过程

《线程池ThreadPoolExecutor应用过程》:本文主要介绍如何使用ThreadPoolExecutor创建线程池,包括其构造方法、常用方法、参数校验以及如何选择合适的拒绝策略,文章还讨论... 目录ThreadPoolExecutor构造说明及常用方法为什么强制要求使用ThreadPoolExec

mysql_mcp_server部署及应用实践案例

《mysql_mcp_server部署及应用实践案例》文章介绍了在CentOS7.5环境下部署MySQL_mcp_server的步骤,包括服务安装、配置和启动,还提供了一个基于Dify工作流的应用案例... 目录mysql_mcp_server部署及应用案例1. 服务安装1.1. 下载源码1.2. 创建独立

mybatis-plus分表实现案例(附示例代码)

《mybatis-plus分表实现案例(附示例代码)》MyBatis-Plus是一个MyBatis的增强工具,在MyBatis的基础上只做增强不做改变,为简化开发、提高效率而生,:本文主要介绍my... 目录文档说明数据库水平分表思路1. 为什么要水平分表2. 核心设计要点3.基于数据库水平分表注意事项示例

SpringBoot整合AOP及使用案例实战

《SpringBoot整合AOP及使用案例实战》本文详细介绍了SpringAOP中的切入点表达式,重点讲解了execution表达式的语法和用法,通过案例实战,展示了AOP的基本使用、结合自定义注解以... 目录一、 引入依赖二、切入点表达式详解三、案例实战1. AOP基本使用2. AOP结合自定义注解3.

Springboot3 ResponseEntity 完全使用案例

《Springboot3ResponseEntity完全使用案例》ResponseEntity是SpringBoot中控制HTTP响应的核心工具——它能让你精准定义响应状态码、响应头、响应体,相比... 目录Spring Boot 3 ResponseEntity 完全使用教程前置准备1. 项目基础依赖(M

C++11中的包装器实战案例

《C++11中的包装器实战案例》本文给大家介绍C++11中的包装器实战案例,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录引言1.std::function1.1.什么是std::function1.2.核心用法1.2.1.包装普通函数1.2.

Redis 命令详解与实战案例

《Redis命令详解与实战案例》本文详细介绍了Redis的基础知识、核心数据结构与命令、高级功能与命令、最佳实践与性能优化,以及实战应用场景,通过实战案例,展示了如何使用Redis构建高性能应用系统... 目录Redis 命令详解与实战案例一、Redis 基础介绍二、Redis 核心数据结构与命令1. 字符

Nginx内置变量应用场景分析

《Nginx内置变量应用场景分析》Nginx内置变量速查表,涵盖请求URI、客户端信息、服务器信息、文件路径、响应与性能等类别,这篇文章给大家介绍Nginx内置变量应用场景分析,感兴趣的朋友跟随小编一... 目录1. Nginx 内置变量速查表2. 核心变量详解与应用场景3. 实际应用举例4. 注意事项Ng

通过DBeaver连接GaussDB数据库的实战案例

《通过DBeaver连接GaussDB数据库的实战案例》DBeaver是一个通用的数据库客户端,可以通过配置不同驱动连接各种不同的数据库,:本文主要介绍通过DBeaver连接GaussDB数据库的... 目录​一、前置条件​二、连接步骤​三、常见问题与解决方案​1. 驱动未找到​2. 连接超时​3. 权限不