随机森林应用案例 —— otto产品分类

2023-10-20 17:50

本文主要是介绍随机森林应用案例 —— otto产品分类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

otto产品分类

  • 1 案例背景
  • 2 数据集介绍
  • 3 评分标准
  • 4 流程实现
    • 4.1 获取数据集
    • 4.2 数据基本处理
    • 4.3 模型训练
    • 4.4 模型评估
    • 4.5 模型调优
    • 4.6 生成提交数据

1 案例背景

奥托集团是世界上最大的电子商务公司之一,在20多个国家设有子公司。该公司每天都在世界各地销售数百万种产品,所以对其产品根据性能合理的分类非常重要。

不过,在实际工作中,工作人员发现,许多相同的产品得到了不同的分类。本案例要求,你对奥拓集团的产品进行正确的分类。尽可能的提供分类的准确性。

2 数据集介绍

本案例中,数据集包含大约200,000种产品的93个特征。其目的是建立一个能够区分otto公司主要产品类别的预测模型。所有产品共被分成九个类别(例如时装,电子产品等)
在这里插入图片描述

  • id - 产品id
  • feat_1, feat_2, …, feat_93 - 产品的各个特征
  • target - 产品被划分的类别

数据集:https://www.kaggle.com/c/otto-group-product-classification-challenge/overview

3 评分标准

在这里插入图片描述

4 流程实现

4.1 获取数据集

import pandas as pd
import numpy as np
import matplotlib.pyplot as pltdata = pd.read_csv("./Data/otto/train.csv")
data.head()

在这里插入图片描述
查看数据分布

import seaborn as snssns.countplot(data.target)
plt.show()

在这里插入图片描述
由上图可以看出,该数据类别不均衡,因数据量庞大,采用随机欠采样进行处理

4.2 数据基本处理

(1)确定特征值和标签值

# 采用随机欠采样之前需要确定数据的特征值和标签值
y=data["target"]
x=data.drop(["id","target"],axis=1)

(2)随机欠采样处理

from imblearn.under_sampling import RandomUnderSamplerrus = RandomUnderSampler()
x_resampled,y_resampled = rus.fit_resample(x,y)

查看欠采样后的数据形状

x.shape,y.shape
# ((61878, 93), (61878,))
x_resampled.shape,y_resampled.shape
# ((17361, 93), (17361,))

查看数据经过欠采样之后类别是否平衡

sns.countplot(y_resampled)
plt.show()

在这里插入图片描述

(3)把标签值转换为数字

y_resampled

在这里插入图片描述

from sklearn.preprocessing import LabelEncoderle = LabelEncoder()
y_resampled = le.fit_transform(y_resampled)
y_resampled

在这里插入图片描述
(4)分割数据

from sklearn.model_selection import train_test_splitx_train,x_test,y_train,y_test = train_test_split(x_resampled,y_resampled,test_size=0.2)

4.3 模型训练

from sklearn.ensemble import RandomForestClassifierestimator = RandomForestClassifier(oob_score=True)
estimator.fit(x_train,y_train)

4.4 模型评估

本题要求使用logloss进行模型评估

y_pre = estimator.predict(x_test)
y_test,y_pre

在这里插入图片描述

需要注意的是:logloss在使用过程中,必须要求将输出用one-hot表示

from sklearn.preprocessing import OneHotEncoderone_hot = OneHotEncoder(sparse=False)
y_pre = one_hot.fit_transform(y_pre.reshape(-1,1))
y_test = one_hot.fit_transform(y_test.reshape(-1,1))
y_test,y_pre

在这里插入图片描述

from sklearn.metrics import log_losslog_loss(y_test,y_pre,eps=1e-15,normalize=True)
# 7.637713870225003

改变预测值的输出模式,让输出结果为可能性的百分占比,降低logloss值

y_pre_proba = estimator.predict_proba(x_test)
y_pre_proba

在这里插入图片描述

log_loss(y_test,y_pre_proba,eps=1e-15,normalize=True)
# 0.7611795612521034

由此可见,log_loss值下降了许多

4.5 模型调优

(1)确定最优的n_estimators

# 确定n_estimators的取值范围
tuned_parameters = range(10,200,10)# 创建添加accuracy的一个numpy
accuracy_t = np.zeros(len(tuned_parameters)) # 创建添加error的一个numpy
error_t = np.zeros(len(tuned_parameters)) # 调优过程实现
for i,one_parameter in enumerate(tuned_parameters):estimator = RandomForestClassifier(n_estimators=one_parameter,max_depth=10,max_features=10,min_samples_leaf=10,oob_score=True,random_state=0,n_jobs=-1)estimator.fit(x_train,y_train)# 输出accuracyaccuracy_t[i] = estimator.oob_score_# 输出log_lossy_pre = estimator.predict_proba(x_test)error_t[i] = log_loss(y_test,y_pre,eps=1e-15,normalize=True)# 优化结果过程可视化 
fig,axes = plt.subplots(nrows=1,ncols=2,figsize=(20,4),dpi=100)
axes[0].plot(tuned_parameters,accuracy_t)
axes[1].plot(tuned_parameters,error_t)axes[0].set_xlabel("n_estimators")
axes[0].set_ylabel("accuracy_t")axes[1].set_xlabel("n_estimators")
axes[1].set_ylabel("error_t")axes[0].grid()
axes[1].grid()

在这里插入图片描述
经过图像展示,最后确定n_estimators=175时,效果不错

(2)确定最优的max_depth

# 确定max_depth的取值范围
tuned_parameters = range(10,100,10)# 创建添加accuracy的一个numpy
accuracy_t = np.zeros(len(tuned_parameters)) # 创建添加error的一个numpy
error_t = np.zeros(len(tuned_parameters)) # 调优过程实现
for i,one_parameter in enumerate(tuned_parameters):estimator = RandomForestClassifier(n_estimators=175,max_depth=one_parameter,max_features=10,min_samples_leaf=10,oob_score=True,random_state=0,n_jobs=-1)estimator.fit(x_train,y_train)# 输出accuracyaccuracy_t[i] = estimator.oob_score_# 输出log_lossy_pre = estimator.predict_proba(x_test)error_t[i] = log_loss(y_test,y_pre,eps=1e-15,normalize=True)# 优化结果过程可视化 
fig,axes = plt.subplots(nrows=1,ncols=2,figsize=(20,4),dpi=100)
axes[0].plot(tuned_parameters,accuracy_t)
axes[1].plot(tuned_parameters,error_t)axes[0].set_xlabel("max_depth")
axes[0].set_ylabel("accuracy_t")axes[1].set_xlabel("max_depth")
axes[1].set_ylabel("error_t")axes[0].grid()
axes[1].grid()

在这里插入图片描述
经过图像展示,最后确定max_depth=30时,效果不错

(3)确定最优的max_features

# 确定max_features取值范围
tuned_parameters = range(5,40,5)# 创建添加accuracy的一个numpy
accuracy_t = np.zeros(len(tuned_parameters)) # 创建添加error的一个numpy
error_t = np.zeros(len(tuned_parameters)) # 调优过程实现
for i,one_parameter in enumerate(tuned_parameters):estimator = RandomForestClassifier(n_estimators=175,max_depth=30,max_features=one_parameter,min_samples_leaf=10,oob_score=True,random_state=0,n_jobs=-1)estimator.fit(x_train,y_train)# 输出accuracyaccuracy_t[i] = estimator.oob_score_# 输出log_lossy_pre = estimator.predict_proba(x_test)error_t[i] = log_loss(y_test,y_pre,eps=1e-15,normalize=True)# 优化结果过程可视化
fig,axes = plt.subplots(nrows=1,ncols=2,figsize=(20,4),dpi=100)
axes[0].plot(tuned_parameters,accuracy_t)
axes[1].plot(tuned_parameters,error_t)axes[0].set_xlabel("max_features")
axes[0].set_ylabel("accuracy_t")axes[1].set_xlabel("max_features")
axes[1].set_ylabel("error_t")axes[0].grid()
axes[1].grid()

在这里插入图片描述
经过图像展示,最后确定max_features=15时,效果不错

(4)确定最优的min_samples_leaf

# 确定n_estimators的取值范围
tuned_parameters = range(1,10,2)# 创建添加accuracy的一个numpy
accuracy_t = np.zeros(len(tuned_parameters)) # 创建添加error的一个numpy
error_t = np.zeros(len(tuned_parameters)) # 调优过程实现
for i,one_parameter in enumerate(tuned_parameters):estimator = RandomForestClassifier(n_estimators=175,max_depth=30,max_features=15,min_samples_leaf=one_parameter,oob_score=True,random_state=0,n_jobs=-1)estimator.fit(x_train,y_train)# 输出accuracyaccuracy_t[i] = estimator.oob_score_# 输出log_lossy_pre = estimator.predict_proba(x_test)error_t[i] = log_loss(y_test,y_pre,eps=1e-15,normalize=True)# 优化结果过程可视化
fig,axes = plt.subplots(nrows=1,ncols=2,figsize=(20,4),dpi=100)
axes[0].plot(tuned_parameters,accuracy_t)
axes[1].plot(tuned_parameters,error_t)axes[0].set_xlabel("min_samples_leaf")
axes[0].set_ylabel("accuracy_t")axes[1].set_xlabel("min_samples_leaf")
axes[1].set_ylabel("error_t")axes[0].grid()
axes[1].grid()

在这里插入图片描述
经过图像展示,最后确定min_samples_leaf=1时,效果不错

(5)确定最优模型

estimator = RandomForestClassifier(n_estimators=175,max_depth=30,max_features=15,min_samples_leaf=1,oob_score=True,random_state=0,n_jobs=-1)
estimator.fit(x_train,y_train)
y_pre_proba = estimator.predict_proba(x_test)
log_loss(y_test,y_pre_proba)
# 0.7413651159154644

4.6 生成提交数据

test_data = pd.read_csv("./Data/otto/test.csv")
test_data.head()

在这里插入图片描述

注意:测试集是没有目标值的

为了便于模型预测,删去 id 列,仅保留特征列

test_data_drop_id = test_data.drop("id",axis=1)
test_data_drop_id.head()

在这里插入图片描述

y_pre_test = estimator.predict_proba(test_data_drop_id)
y_pre_test

在这里插入图片描述
按要求生成列名

result_data = pd.DataFrame(y_pre_test,columns=["Class_"+str(i) for i in range(1,10)])
result_data.head()

在这里插入图片描述
在第一列添加 id 列

result_data.insert(loc=0,column="id",value=test_data.id)
result_data.head()

在这里插入图片描述
生成提交数据的csv文件

result_data.to_csv("./Data/otto/Submission.csv",index=False)

这篇关于随机森林应用案例 —— otto产品分类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/248701

相关文章

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或

在Ubuntu上部署SpringBoot应用的操作步骤

《在Ubuntu上部署SpringBoot应用的操作步骤》随着云计算和容器化技术的普及,Linux服务器已成为部署Web应用程序的主流平台之一,Java作为一种跨平台的编程语言,具有广泛的应用场景,本... 目录一、部署准备二、安装 Java 环境1. 安装 JDK2. 验证 Java 安装三、安装 mys

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

使用C#如何创建人名或其他物体随机分组

《使用C#如何创建人名或其他物体随机分组》文章描述了一个随机分配人员到多个团队的代码示例,包括将人员列表随机化并根据组数分配到不同组,最后按组号排序显示结果... 目录C#创建人名或其他物体随机分组此示例使用以下代码将人员分配到组代码首先将lstPeople ListBox总结C#创建人名或其他物体随机分组

java中VO PO DTO POJO BO DO对象的应用场景及使用方式

《java中VOPODTOPOJOBODO对象的应用场景及使用方式》文章介绍了Java开发中常用的几种对象类型及其应用场景,包括VO、PO、DTO、POJO、BO和DO等,并通过示例说明了它... 目录Java中VO PO DTO POJO BO DO对象的应用VO (View Object) - 视图对象