本文主要是介绍python最短路径的可视化,计算python中位图中两点之间的最短路径,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
如评论中所述,此问题可以减少到
Dijkstra.
该解决方案背后的关键概念是将图像表示为图形,然后使用最短路径算法的预制实现.
首先,观察大小为4×4的图像的天真表示:
T F F T
T T F T
F T T F
T T T T
其中T是白点,F是黑点.在这种情况下,路径是相邻白点之间的一组移动.
假设图形是一组节点{1,2,…,16},我们可以将每个点(i,j)映射到数字i * 4 j.在图中,边缘是相邻点的反射,意味着如果(i1,j1)和(i2,j2)在图像中相邻,则i1 * 4 j1和i2 * 4 j2在图中相邻.
此时,我们有一个图表,我们可以在其中计算最短路径.
幸运的是,python为图像加载和最短路径实现提供了简单的实现.以下代码处理可视化结果的路径计算:
import itertools
from scipy import misc
from scipy.sparse.dok import dok_matrix
from scipy.sparse.csgraph import dijkstra
# Load the image from disk as a numpy ndarray
original_img = misc.imread('path_t_image')
# Create a flat color image for graph building:
img = original_img[:, :, 0] + original_img[:, :, 1] + original_img[:, :, 2]
# Defines a translation from 2 coordinates to a single number
def to_index(y, x):
return y * img.shape[1] + x
# Defines a reversed translation from index to 2 coordinates
def to_coordinates(index):
return index / img.shape[1], index % img.shape[1]
# A sparse adjacency matrix.
# Two pixels are adjacent in the graph if both are painted.
adjacency = dok_matrix((img.shape[0] * img.shape[1],
img.shape[0] * img.shape[1]), dtype=bool)
# The following lines fills the adjacency matrix by
directions = list(itertools.product([0, 1, -1], [0, 1, -1]))
for i in range(1, img.shape[0] - 1):
for j in range(1, img.shape[1] - 1):
if not img[i, j]:
continue
for y_diff, x_diff in directions:
if img[i + y_diff, j + x_diff]:
adjacency[to_index(i, j),
to_index(i + y_diff, j + x_diff)] = True
# We chose two arbitrary points, which we know are connected
source = to_index(14, 47)
target = to_index(151, 122)
# Compute the shortest path between the source and all other points in the image
_, predecessors = dijkstra(adjacency, directed=False, indices=[source],
unweighted=True, return_predecessors=True)
# Constructs the path between source and target
pixel_index = target
pixels_path = []
while pixel_index != source:
pixels_path.append(pixel_index)
pixel_index = predecessors[0, pixel_index]
# The following code is just for debugging and it visualizes the chosen path
import matplotlib.pyplot as plt
for pixel_index in pixels_path:
i, j = to_coordinates(pixel_index)
original_img[i, j, 0] = original_img[i, j, 1] = 0
plt.imshow(original_img)
plt.show()
免责声明:
>我没有图像处理经验,所以我怀疑解决方案的每一步.>该解决方案假设一个非常天真的邻接谓词.对于这部分,计算几何中可能有一些更好的方法.
这篇关于python最短路径的可视化,计算python中位图中两点之间的最短路径的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!