Curiously recurring template pattern ( 奇怪的重复模板模式,CRTP)

本文主要是介绍Curiously recurring template pattern ( 奇怪的重复模板模式,CRTP),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

CRTPC++中的一种技术,其中Derived类从类模板Base派生。关键是Base有一个Derived作为模板参数。

template<class T>
class Base{
...
};class Derived : public Base<Derived>{
...
};

CRTP是仅在需要时才实例化类模板的方法,使用静态多态方式。

静态多态与动态多态非常相似。但是与使用虚拟方法的动态多态性相反,方法调用的调度将在编译时进行。

// crtp.cpp#include <iostream>template <typename Derived> 
struct Base{//  void interface(){ implementation(); }//  virtual void implementation(){}void interface(){static_cast<Derived*>(this)->implementation();}void implementation(){std::cout << "Implementation Base" << std::endl;}};struct Derived1: Base<Derived1>{void implementation(){std::cout << "Implementation Derived1" << std::endl;}
};struct Derived2: Base<Derived2>{void implementation(){std::cout << "Implementation Derived2" << std::endl;}
};struct Derived3: Base<Derived3>{};template <typename T>
void execute(T& base){base.interface();
}int main(){std::cout << std::endl;Derived1 d1;execute(d1);Derived2 d2;execute(d2);Derived3 d3;execute(d3);std::cout << std::endl;}

我在函数模板中使用execute(第34-37行)静态多态性。我在每个参数基础上调用方法base.interface

第10-12行中的方法Base :: interface是CRTP习惯用法的关键点。这些方法分派给派生类的实现:static_cast <Derived *>(this)-> implementation()。这是可能的,因为该方法将在调用时实例化。

此时,派生类Derived1,Derived2Derived3已完全定义。因此,方法Base::interface可以使用其派生类的详细信息。特别有趣的是Base :: implementation方法(第14-16行)。该方法充当Derived3类的静态多态性的默认实现(第32行)。

该技术实现了与virtual function的使用相似的效果。如果基类成员函数对所有成员函数调用均使用CRTP,则将在编译时选择派生类中的重写函数。这有效地在编译时模拟了虚拟函数调用系统,而没有大小或函数调用开销(VTBL结构和方法查找,多继承VTBL机制)的开销,但缺点是无法在运行时做出选择。

因此有些人将CRTP的这种特殊用法称为“模拟动态绑定”。 Windows ATL和WTL库中广泛使用此模式。


Mixins with CRTP

Mixins是在类中设计以混合新代码的流行概念。因此,它是Python中通过使用多个继承来更改类的行为的常用技术。与C ++相反,在Python中,在类层次结构中具有一个方法的多个定义是合法的。 Python仅使用方法解析顺序( Method Resolution Order,即MRO)中首先使用的方法。

您可以使用CRTP在C ++中实现mixin。一个著名的例子是类std :: enable_shared_from_this。通过使用此类,您可以创建向自己返回std :: shared_ptr的对象。

您可以从std :: enable_shared_from_this派生您的公共类MySharedClass。现在,您的类MySharedClass具有shared_from_this方法,用于为其对象创建std :: shared_ptr。

#include <iostream>
#include <memory>class ShareMe : public std::enable_shared_from_this<ShareMe> {
public:std::shared_ptr<ShareMe> getShared() {return shared_from_this();}
};int main() {std::shared_ptr<ShareMe> shareMe(new ShareMe);std::shared_ptr<ShareMe> shareMe1 = shareMe->getShared();//std :: shared_ptr <T> :: use_count返回不同shared_ptr实例的数量{auto shareMe2(shareMe1);std::cout << "shareMe.use_count(): " << shareMe.use_count() << std::endl; }std::cout << "shareMe.use_count(): " << shareMe.use_count() << std::endl;//当智能指针中有值的时候,调用reset()会使引用计数减1.shareMe1.reset();std::cout << "shareMe.use_count(): " << shareMe.use_count() << std::endl;return 0;
}

智能指针shareMe(第12行)并复制shareMe1(第13行)和shareMe2(第17行)引用相同的资源,并递增和递减引用计数器。
在这里插入图片描述
mixin的另一个典型用例是您要扩展的类,其类具有其实例支持相等性和不平等性比较的功能。

#include <iostream>
#include <string>template<class Derived>
class Equality 
{};class Apple :public Equality<Apple> {
public:Apple(int s) : size{ s } {};int size;
};class Man :public Equality<Man> {
public:Man(std::string n) : name{ n } {}std::string name;
};template <class Derived>
bool operator == ( Equality<Derived> const & op1 , Equality<Derived> const & op2 ) 
{Derived const& d1 = static_cast<Derived const&>(op1);Derived const& d2 = static_cast<Derived const&>(op2);return !(d1 < d2) && !(d2 < d1);
}template <class Derived>
bool operator != ( Equality<Derived> const & op1 , Equality<Derived> const & op2 )
{Derived const& d1 = static_cast<Derived const&>(op1);Derived const& d2 = static_cast<Derived const&>(op2);return !(op1 == op2);
}bool operator < (Apple const& a1, Apple const& a2) 
{return a1.size < a2.size;
}bool operator < (Man const& m1, Man const& m2)
{return m1.name < m2.name;
}int main() 
{std::cout << std::boolalpha ;Apple apple1{ 5 };Apple apple2{ 10 };std::cout << "apple1 == apple2: " << (apple1 == apple2) << std::endl;Man man1{ "grimm" };Man man2{ "jaud" };std::cout << "man1 != man2: " << (man1 != man2) << std::endl;return 0;
}

参考文章:

  • https://www.modernescpp.com/index.php/specialities-of-std-shared-ptr
  • https://www.modernescpp.com/index.php/c-is-still-lazy

这篇关于Curiously recurring template pattern ( 奇怪的重复模板模式,CRTP)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/246622

相关文章

MySQL重复数据处理的七种高效方法

《MySQL重复数据处理的七种高效方法》你是不是也曾遇到过这样的烦恼:明明系统测试时一切正常,上线后却频频出现重复数据,大批量导数据时,总有那么几条不听话的记录导致整个事务莫名回滚,今天,我就跟大家分... 目录1. 重复数据插入问题分析1.1 问题本质1.2 常见场景图2. 基础解决方案:使用异常捕获3.

Nginx location匹配模式与规则详解

《Nginxlocation匹配模式与规则详解》:本文主要介绍Nginxlocation匹配模式与规则,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、环境二、匹配模式1. 精准模式2. 前缀模式(不继续匹配正则)3. 前缀模式(继续匹配正则)4. 正则模式(大

IDEA自动生成注释模板的配置教程

《IDEA自动生成注释模板的配置教程》本文介绍了如何在IntelliJIDEA中配置类和方法的注释模板,包括自动生成项目名称、包名、日期和时间等内容,以及如何定制参数和返回值的注释格式,需要的朋友可以... 目录项目场景配置方法类注释模板定义类开头的注释步骤类注释效果方法注释模板定义方法开头的注释步骤方法注

Linux系统配置NAT网络模式的详细步骤(附图文)

《Linux系统配置NAT网络模式的详细步骤(附图文)》本文详细指导如何在VMware环境下配置NAT网络模式,包括设置主机和虚拟机的IP地址、网关,以及针对Linux和Windows系统的具体步骤,... 目录一、配置NAT网络模式二、设置虚拟机交换机网关2.1 打开虚拟机2.2 管理员授权2.3 设置子

SpringBoot如何通过Map实现策略模式

《SpringBoot如何通过Map实现策略模式》策略模式是一种行为设计模式,它允许在运行时选择算法的行为,在Spring框架中,我们可以利用@Resource注解和Map集合来优雅地实现策略模式,这... 目录前言底层机制解析Spring的集合类型自动装配@Resource注解的行为实现原理使用直接使用M

C++原地删除有序数组重复项的N种方法

《C++原地删除有序数组重复项的N种方法》给定一个排序数组,你需要在原地删除重复出现的元素,使得每个元素只出现一次,返回移除后数组的新长度,不要使用额外的数组空间,你必须在原地修改输入数组并在使用O(... 目录一、问题二、问题分析三、算法实现四、问题变体:最多保留两次五、分析和代码实现5.1、问题分析5.

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

C#原型模式之如何通过克隆对象来优化创建过程

《C#原型模式之如何通过克隆对象来优化创建过程》原型模式是一种创建型设计模式,通过克隆现有对象来创建新对象,避免重复的创建成本和复杂的初始化过程,它适用于对象创建过程复杂、需要大量相似对象或避免重复初... 目录什么是原型模式?原型模式的工作原理C#中如何实现原型模式?1. 定义原型接口2. 实现原型接口3

大数据spark3.5安装部署之local模式详解

《大数据spark3.5安装部署之local模式详解》本文介绍了如何在本地模式下安装和配置Spark,并展示了如何使用SparkShell进行基本的数据处理操作,同时,还介绍了如何通过Spark-su... 目录下载上传解压配置jdk解压配置环境变量启动查看交互操作命令行提交应用spark,一个数据处理框架

解决jupyterLab打开后出现Config option `template_path`not recognized by `ExporterCollapsibleHeadings`问题

《解决jupyterLab打开后出现Configoption`template_path`notrecognizedby`ExporterCollapsibleHeadings`问题》在Ju... 目录jupyterLab打开后出现“templandroidate_path”相关问题这是 tensorflo