EM@分段函数复合的基本问题@函数间的初等运算

2023-10-03 11:42

本文主要是介绍EM@分段函数复合的基本问题@函数间的初等运算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • abstract
      • 分段函数的一般表示
    • 分段函数复合的基本问题
      • 分析
      • 算法
    • 函数的初等运算构成的函数
      • 复合函数的定义域
      • 函数的运算

abstract

  • 复合函数和分段函数的表示和应用

  • 复合函数中我们讨论过函数 g , f g,f g,f复合为 f ∘ g f\circ{g} fg的条件是 R g ∩ D f = ∅ R_{g}\cap{D_f}=\emptyset RgDf=,并且 f ∘ g f\circ{g} fg的定义域为 { x ∣ g ( x ) ∈ D f } \set{x|g(x)\in{D_{f}}} {xg(x)Df}

  • 函数间的初等运算

分段函数的一般表示

  • f f f n n n段分段函数,第 i i i段的解析式记为 f i f_i fi,定义域记为 D i D_i Di则分段函数可以看作 n n n个函数拼接成一个函数:可记为 f = f i ( x ) , x ∈ D f i f=f_{i}(x),x\in{D_{f_i}} f=fi(x),xDfi, ( i = 1 , 2 , ⋯ , n ) (i=1,2,\cdots,n) (i=1,2,,n)

分段函数复合的基本问题

  • f = f i ( x ) , x ∈ D f i f=f_{i}(x),x\in{D_{f_i}} f=fi(x),xDfi, ( i = 1 , 2 , ⋯ , n ) (i=1,2,\cdots,n) (i=1,2,,n); g = g i ( x ) , x ∈ D g i g=g_{i}(x),x\in{D_{g_i}} g=gi(x),xDgi, ( i = 1 , 2 , ⋯ , m ) (i=1,2,\cdots,m) (i=1,2,,m),求 h = f ∘ g h=f\circ{g} h=fg?

分析

  • 上述问题显然需要分段讨论
  • 为了使得问题表达的更加清晰和便于讨论,我们引入中间变量 u u u代替字母 x x x来改写函数,即
    • f = f i ( u ) , x ∈ D f i f=f_i(u),x\in{D_{f_i}} f=fi(u),xDfi; u = u j ( x ) , x ∈ D u j u=u_{j}(x),x\in{D_{u_j}} u=uj(x),xDuj
    • 其实改为 f = f i ( g ) , x ∈ D f i f=f_i(g),x\in{D_{f_i}} f=fi(g),xDfi; g = g i ( x ) , x ∈ D u i g=g_{i}(x),x\in{D_{u_i}} g=gi(x),xDui也可以
  • 基本思想是通过 D f D_f Df筛选出满足 D f ∩ R u = ∅ D_{f}\cap R_{u}=\emptyset DfRu=的定义域 D h D_{h} Dh,其中包含了分段(函数)不等式问题这个过程中自然得到 f ∘ g f\circ{g} fg的结果

算法

  • 根据范围 D f i D_{f_i} Dfi求出解集 D i = { x ∣ u ( x ) ∈ D f i } D_i=\set{x|u(x)\in{D_{f_i}}} Di={xu(x)Dfi}, i = 1 , 2 , ⋯ , n i=1,2,\cdots,n i=1,2,,n(分段不等式问题)
    • D i ≠ ∅ D_i\neq{\emptyset} Di=,且 D h i k = D i ∩ D u j k ≠ ∅ , k = 1 , 2 , ⋯ D_{h_{ik}}=D_i\cap D_{u_{j_k}}\neq{\empty},k=1,2,\cdots Dhik=DiDujk=,k=1,2,,则 f ∘ u = f ( u ( x ) ) f\circ{u}=f(u(x)) fu=f(u(x)) D i D_i Di区间内可以复合为 f i ( u j k ( x ) ) f_{i}(u_{j_k}(x)) fi(ujk(x)), x ∈ D h i k x\in{D_{h_{ik}}} xDhik, i = 1 , 2 , ⋯ , n i=1,2,\cdots,n i=1,2,,n
    • 或者更直接地 D h i j = { x ∣ x ∈ D f i ∩ x ∈ D u j } D_{h_{ij}}=\set{x|x\in{D_{f_i}}\cap{x\in{D_{u_{j}}}}} Dhij={xxDfixDuj},若 D h i j ≠ ∅ D_{h_{ij}}\neq{\emptyset} Dhij=,则 h ( x ) = f ∘ g ( x ) h(x)=f\circ{g}(x) h(x)=fg(x)= f i ( u j ( x ) ) f_{i}(u_{j}(x)) fi(uj(x)), x ∈ D h i j x\in D_{h_{ij}} xDhij,这个过程会产生 m × n m\times{n} m×n个不等式(其中可能包含解集为空集的不等式,这种情况应舍去,属于无法复合的区间)
  • 分段不等式问题中,我们可以借助数形结合的方式,绘制 u ( x ) u(x) u(x)的图像草图,在根据 D f i D_{f_i} Dfi得出自变量 x x x的取值范围 D h i k D_{h_{ik}} Dhik,从而得到复合函数 f i ( u j k ( x ) ) f_{i}(u_{j_k}(x)) fi(ujk(x)), x ∈ D h i k x\in{D_{h_{ik}}} xDhik, i = 1 , 2 , ⋯ , n i=1,2,\cdots,n i=1,2,,n

  • f ( x ) = { ( x − 1 ) 2 x ⩽ 1 1 x − 1 x > 1 f(x)=\begin{cases}(x-1)^2&x\leqslant{1}\\\frac{1}{x-1}&x>1\end{cases} f(x)={(x1)2x11x1x>1

  • g ( x ) = { 2 x x > 0 3 x x ⩽ 0 g(x)=\begin{cases}2x&x>0\\3x&x\leqslant{0}\end{cases} g(x)={2x3xx>0x0

  • f ( g ( x ) ) f(g(x)) f(g(x))

    • 初步复合

      • f ( g ( x ) ) = { ( g ( x ) − 1 ) 2 g ( x ) ⩽ 1 1 g ( x ) − 1 g ( x ) > 1 f(g(x))=\begin{cases} (g(x)-1)^2&g(x)\leqslant{1}\\ \frac{1}{g(x)-1}&g(x)>1 \end{cases} f(g(x))={(g(x)1)2g(x)11g(x)1g(x)>1
    • 进一步展开

      • f ( g ( x ) ) = { ( 2 x − 1 ) 2 2 x ⩽ 1 , x > 0 ( 3 x − 1 ) 2 3 x ⩽ 1 , x ⩽ 0 1 2 x − 1 2 x > 1 , x > 0 3 2 x − 1 2 x > 1 , x ⩽ 0 f(g(x))=\begin{cases} (2x-1)^2 &2x\leqslant{1},x>0\\ (3x-1)^2 &3x\leqslant{1},x\leqslant{0}\\ \frac{1}{2x-1} &2x>{1},x>0\\ \frac{3}{2x-1} &2x>{1},x\leqslant{0} \end{cases} f(g(x))= (2x1)2(3x1)22x112x132x1,x>03x1,x02x>1,x>02x>1,x0
    • 化简

      • f ( g ( x ) ) = { ( 2 x − 1 ) 2 x ∈ ( 0 , 1 2 ] ( 3 x − 1 ) 2 x ∈ ( − ∞ , 0 ] 1 2 x − 1 x ∈ [ 1 2 , + ∞ ) 3 2 x − 1 x ∈ ∅ f(g(x))=\begin{cases} (2x-1)^2 &x\in(0,\frac{1}{2}]\\ (3x-1)^2 &x\in(-\infin,0]\\ \frac{1}{2x-1} &x\in[\frac{1}{2},+\infin)\\ \frac{3}{2x-1} &x\in\emptyset \end{cases} f(g(x))= (2x1)2(3x1)22x112x13x(0,21]x(,0]x[21,+)x

      • 舍去空集定义域部分
        f ( g ( x ) ) = { ( 2 x − 1 ) 2 x ∈ ( 0 , 1 2 ] ( 3 x − 1 ) 2 x ∈ ( − ∞ , 0 ] 1 2 x − 1 x ∈ [ 1 2 , + ∞ ) f(g(x))=\begin{cases} (2x-1)^2 &x\in(0,\frac{1}{2}]\\ (3x-1)^2 &x\in(-\infin,0]\\ \frac{1}{2x-1} &x\in[\frac{1}{2},+\infin)\\ \end{cases} f(g(x))= (2x1)2(3x1)22x11x(0,21]x(,0]x[21,+)

  • f ( x ) = { 1 3 , − 1 ⩽ x ⩽ 2 0 , e l s e f(x)=\begin{cases} \frac{1}{3},&-1\leqslant x\leqslant 2\\0,&else \end{cases} f(x)={31,0,1x2else

  • g ( x ) = − x g(x)=-x g(x)=x

  • h = f ( g ( x ) ) = f ( − x ) = { 1 3 , − 1 ⩽ − x ⩽ 2 0 , e l s e = { 1 3 , − 2 ⩽ x ⩽ 1 0 , e l s e h=f(g(x))= f(-x)=\begin{cases} \frac{1}{3},&-1\leqslant \boxed{-x}\leqslant 2 \\0,&else \end{cases} =\begin{cases} \frac{1}{3},&-2\leqslant x\leqslant 1 \\0,&else \end{cases} h=f(g(x))=f(x)={31,0,1x2else={31,0,2x1else

函数的初等运算构成的函数

复合函数的定义域

  • f 1 ( x ) f_1(x) f1(x)的定义域为 D f 1 D_{f_1} Df1, f 2 ( x ) f_2(x) f2(x)的定义域为 D f 2 D_{f_2} Df2,令 F ( x ) = f 1 ( f 2 ( x ) ) F(x)=f_1(f_2(x)) F(x)=f1(f2(x)),
  • F F F的定义域是 { x ∣ f 2 ( x ) ∈ D f 1 } \set{x|f_2(x)\in{D_{f_1}}} {xf2(x)Df1},而不是 D F = D f 1 ∩ D f 2 D_F=D_{f_1}\cap{D_{f_2}} DF=Df1Df2
  • 例如: f 1 ( x ) = ln ⁡ ( x ) f_1(x)=\ln(x) f1(x)=ln(x), g 2 ( x ) = x 2 + 1 g_2(x)=x^2+1 g2(x)=x2+1,则 f 1 ( f 2 ( x ) ) f_1(f_2(x)) f1(f2(x))= ln ⁡ ( x 2 + 1 ) \ln(x^2+1) ln(x2+1)的定义域是 x ∈ R x\in\mathbb{R} xR,而不是 D f 1 ∩ D f 2 = { x ∣ x > 0 } D_{f_1}\cap{D_{f_2}}=\set{x|x>0} Df1Df2={xx>0}

函数的运算

  • 设函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)的定义域依次为 D f , D g D_f,D_g Df,Dg,
  • 若两函数的定义域交集非空,即 D = D f ∩ D g ≠ ∅ D=D_f\cap{D_g}\neq{\emptyset} D=DfDg=,则规定:这两个函数的下列运算:
    • f ± g f\pm{g} f±g: ( f ± g ) ( x ) (f\pm{g})(x) (f±g)(x)= f ( x ) ± g ( x ) f(x)\pm{g(x)} f(x)±g(x), x ∈ D x\in{D} xD
    • f ⋅ g f\cdot{g} fg: ( f ⋅ g ) ( x ) = f ( x ) ⋅ g ( x ) ) , x ∈ D (f\cdot{g})(x)=f(x)\cdot{g(x))},x\in{D} (fg)(x)=f(x)g(x)),xD
    • f g \frac{f}{g} gf: ( f g ) ( x ) (\frac{f}{g})(x) (gf)(x)= f ( x ) g ( x ) \frac{f(x)}{g(x)} g(x)f(x), x ∈ D \ { x ∣ g ( x ) = 0 } x\in{D}\backslash \set{x|g(x)=0} xD\{xg(x)=0},这里 \ \backslash \表示求相对补集(差集)

这篇关于EM@分段函数复合的基本问题@函数间的初等运算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/246

相关文章

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

基本知识点

1、c++的输入加上ios::sync_with_stdio(false);  等价于 c的输入,读取速度会加快(但是在字符串的题里面和容易出现问题) 2、lower_bound()和upper_bound() iterator lower_bound( const key_type &key ): 返回一个迭代器,指向键值>= key的第一个元素。 iterator upper_bou

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

购买磨轮平衡机时应该注意什么问题和技巧

在购买磨轮平衡机时,您应该注意以下几个关键点: 平衡精度 平衡精度是衡量平衡机性能的核心指标,直接影响到不平衡量的检测与校准的准确性,从而决定磨轮的振动和噪声水平。高精度的平衡机能显著减少振动和噪声,提高磨削加工的精度。 转速范围 宽广的转速范围意味着平衡机能够处理更多种类的磨轮,适应不同的工作条件和规格要求。 振动监测能力 振动监测能力是评估平衡机性能的重要因素。通过传感器实时监

uva 575 Skew Binary(位运算)

求第一个以(2^(k+1)-1)为进制的数。 数据不大,可以直接搞。 代码: #include <stdio.h>#include <string.h>const int maxn = 100 + 5;int main(){char num[maxn];while (scanf("%s", num) == 1){if (num[0] == '0')break;int len =

缓存雪崩问题

缓存雪崩是缓存中大量key失效后当高并发到来时导致大量请求到数据库,瞬间耗尽数据库资源,导致数据库无法使用。 解决方案: 1、使用锁进行控制 2、对同一类型信息的key设置不同的过期时间 3、缓存预热 1. 什么是缓存雪崩 缓存雪崩是指在短时间内,大量缓存数据同时失效,导致所有请求直接涌向数据库,瞬间增加数据库的负载压力,可能导致数据库性能下降甚至崩溃。这种情况往往发生在缓存中大量 k

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

【IPV6从入门到起飞】5-1 IPV6+Home Assistant(搭建基本环境)

【IPV6从入门到起飞】5-1 IPV6+Home Assistant #搭建基本环境 1 背景2 docker下载 hass3 创建容器4 浏览器访问 hass5 手机APP远程访问hass6 更多玩法 1 背景 既然电脑可以IPV6入站,手机流量可以访问IPV6网络的服务,为什么不在电脑搭建Home Assistant(hass),来控制你的设备呢?@智能家居 @万物互联