window下线程同步之(Critical Sections(关键代码段、关键区域、临界区域)

本文主要是介绍window下线程同步之(Critical Sections(关键代码段、关键区域、临界区域),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 关键区域(CriticalSection)

临界区是为了确保同一个代码片段在同一时间只能被一个线程访问,与原子锁不同的是临界区是多条指令的锁定,而原子锁仅仅对单条操作指令有效;临界区和原子锁只能控制同一个进程中线程的同步

使用方法:

1、初始化:InitializeCriticalSection; 
2、删除:DeleteCriticalSection; 
3、进入:EnterCriticalSection(可能造成阻塞); 
4、尝试进入:TryEnterCriticalSection(不会造成阻塞); 
5、离开:LeaveCriticalSection;

固有特点(优点+缺点):
1、是一个用户模式的对象,不是系统核心对象;
2、因为不是核心对象,所以执行速度快,有效率;
3、因为不是核心对象,所以不能跨进程使用;
4、可以多次“进入”,但必须多次“退出”;
5、最好不要同时进入或等待多个 Critical Sections,容易造成死锁;
6、无法检测到进入到 Critical Sections 里面的线程当前是否已经退出!

 

一般错误的情况:

#include <stdio.h> 
#include <windows.h>long g_nNum = 0 ; 
DWORD WINAPI ThreadProc(__in  LPVOID lpParameter); 
const int THREAD_NUM = 10;int main() 
{HANDLE  handle[THREAD_NUM];    g_nNum = 0; int var = 0; while ( var< THREAD_NUM) { handle[ var++] = CreateThread(NULL, 0, ThreadProc, NULL, 0, NULL);} WaitForMultipleObjects(THREAD_NUM, handle, TRUE, INFINITE);for( var=0; var<sizeof(handle); var++) { CloseHandle(handle[var]); }return 0; 
}DWORD WINAPI ThreadProc(__in  LPVOID lpParameter) 
{ Sleep(50); g_nNum++; Sleep(0); printf("当前计数为:%d\n",g_nNum); return 0; 
}

运行2次结果:

image

image

用了关键区域的情况:

#include <stdio.h> 
#include <windows.h>long g_nNum = 0 ; 
DWORD WINAPI ThreadProc(__in  LPVOID lpParameter); 
const int THREAD_NUM = 10;CRITICAL_SECTION g_ThreadCode;int main() 
{HANDLE  handle[THREAD_NUM];    g_nNum = 0; int var = 0; InitializeCriticalSection(&g_ThreadCode); while ( var< THREAD_NUM) { handle[ var++] = CreateThread(NULL, 0, ThreadProc, NULL, 0, NULL); } WaitForMultipleObjects(THREAD_NUM, handle, TRUE, INFINITE); DeleteCriticalSection( &g_ThreadCode ); for( var=0; var<sizeof(handle); var++) { CloseHandle(handle[var]); }return 0; 
}DWORD WINAPI ThreadProc(__in  LPVOID lpParameter) 
{  EnterCriticalSection( &g_ThreadCode ); g_nNum++;  printf("当前计数为:%d\n",g_nNum); LeaveCriticalSection( &g_ThreadCode ); return 0; 
}

image

转载于:https://www.cnblogs.com/staring-hxs/p/3664634.html

这篇关于window下线程同步之(Critical Sections(关键代码段、关键区域、临界区域)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/245690

相关文章

Linux线程之线程的创建、属性、回收、退出、取消方式

《Linux线程之线程的创建、属性、回收、退出、取消方式》文章总结了线程管理核心知识:线程号唯一、创建方式、属性设置(如分离状态与栈大小)、回收机制(join/detach)、退出方法(返回/pthr... 目录1. 线程号2. 线程的创建3. 线程属性4. 线程的回收5. 线程的退出6. 线程的取消7.

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于

Javaee多线程之进程和线程之间的区别和联系(最新整理)

《Javaee多线程之进程和线程之间的区别和联系(最新整理)》进程是资源分配单位,线程是调度执行单位,共享资源更高效,创建线程五种方式:继承Thread、Runnable接口、匿名类、lambda,r... 目录进程和线程进程线程进程和线程的区别创建线程的五种写法继承Thread,重写run实现Runnab

PowerShell中15个提升运维效率关键命令实战指南

《PowerShell中15个提升运维效率关键命令实战指南》作为网络安全专业人员的必备技能,PowerShell在系统管理、日志分析、威胁检测和自动化响应方面展现出强大能力,下面我们就来看看15个提升... 目录一、PowerShell在网络安全中的战略价值二、网络安全关键场景命令实战1. 系统安全基线核查

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Java中实现线程的创建和启动的方法

《Java中实现线程的创建和启动的方法》在Java中,实现线程的创建和启动是两个不同但紧密相关的概念,理解为什么要启动线程(调用start()方法)而非直接调用run()方法,是掌握多线程编程的关键,... 目录1. 线程的生命周期2. start() vs run() 的本质区别3. 为什么必须通过 st

Linux实现线程同步的多种方式汇总

《Linux实现线程同步的多种方式汇总》本文详细介绍了Linux下线程同步的多种方法,包括互斥锁、自旋锁、信号量以及它们的使用示例,通过这些同步机制,可以解决线程安全问题,防止资源竞争导致的错误,示例... 目录什么是线程同步?一、互斥锁(单人洗手间规则)适用场景:特点:二、条件变量(咖啡厅取餐系统)工作流

Java中常见队列举例详解(非线程安全)

《Java中常见队列举例详解(非线程安全)》队列用于模拟队列这种数据结构,队列通常是指先进先出的容器,:本文主要介绍Java中常见队列(非线程安全)的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一.队列定义 二.常见接口 三.常见实现类3.1 ArrayDeque3.1.1 实现原理3.1.2