朴素贝叶斯文本分类-在《红楼梦》作者鉴别的应用上(python实现)

本文主要是介绍朴素贝叶斯文本分类-在《红楼梦》作者鉴别的应用上(python实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

朴素贝叶斯算法简单、高效。接下来我们来介绍其如何应用在《红楼梦》作者的鉴别上。

第一步,当然是先得有文本数据,我在网上随便下载了一个txt(当时急着交初稿。。。)。分类肯定是要一个回合一个回合的分,所以我们拿到文本数据后,先进行回合划分。然后就是去标点符号、分词,做词频统计。

  1 # -*- coding: utf-8 -*-
  2 import re
  3 import jieba
  4 import string
  5 import collections as coll
  6 jieba.load_userdict('E:\\forpython\\红楼梦词汇大全.txt') # 导入搜狗的红楼梦词库
  7                      
  8                    
  9 class textprocesser:
 10     def __init__(self):
 11         pass
 12         
 13     # 将小说分成120个章节并单独保存到txt文件中   
 14     def divide_into_chapter(self):
 15         red=open('E:\\forpython\\红楼梦.txt',encoding='utf-8')
 16         each_line = red.readline()
 17         chapter_count = 0
 18         chapter_text = ''
 19         complied_rule = re.compile('第[一二三四五六七八九十百]+回  ')
 20     
 21         while each_line:
 22             if re.findall(complied_rule,each_line):
 23                 file_name = 'chap'+str(chapter_count)
 24                 file_out = open('E:\\forpython\\chapters\\'+file_name+'.txt','a',encoding = 'utf-8')
 25                 file_out.write(chapter_text)
 26                 chapter_count += 1
 27                 file_out.close()
 28                 chapter_text = each_line
 29             else:
 30                 chapter_text += each_line
 31         
 32             each_line = red.readline()
 33     
 34         red.close()
 35     
 36 
 37     # 对单个章节的分词
 38     def segmentation(self,text,text_count):
 39         file_name = 'chap'+str(text_count)+'-words.txt'
 40         file_out = open('E:\\forpython\\chapter2words\\'+file_name,'a',encoding='utf-8')
 41         delset = string.punctuation
 42     
 43         line=text.readline()
 44     
 45         while line:
 46             seg_list = jieba.cut(line,cut_all = False)
 47             words = " ".join(seg_list)
 48             words = words.translate(delset) # 去除英文标点
 49             words = "".join(words.split('\n')) # 去除回车符
 50             words = self.delCNf(words) # 去除中文标点
 51             words = re.sub('[ \u3000]+',' ',words) # 去除多余的空格
 52             file_out.write(words)
 53             line = text.readline()
 54     
 55         file_out.close()
 56         text.close()
 57 
 58 
 59     # 对所有章节分词
 60     def do_segmentation(self):
 61         for loop in range(1,121):
 62             file_name = 'chap'+str(loop)+'.txt'
 63             file_in = open('E:\\forpython\\chapters\\'+file_name,'r',encoding = 'utf-8')
 64         
 65             self.segmentation(file_in,loop)
 66         
 67             file_in.close()
 68                    
 69     # 去除中文字符函数
 70     def delCNf(self,line):
 71         regex = re.compile('[^\u4e00-\u9fa5a-zA-Z0-9\s]')
 72         return regex.sub('', line)
 73     
 74     
 75     # 去除标点后进行词频统计
 76     def count_words(self,text,textID):
 77         line = str(text)
 78         words = line.split()
 79         words_dict = coll.Counter(words) # 生成词频字典
 80         
 81         file_name = 'chap'+str(textID)+'-wordcount.txt'
 82         file_out = open('E:\\forpython\\chapter-wordcount\\'+file_name,'a',encoding = 'utf-8')
 83         
 84         # 排序后写入文本
 85         sorted_result = sorted(words_dict.items(),key = lambda d:d[1],reverse = True)
 86         for one in sorted_result:
 87             line = "".join(one[0] + '\t' + str(one[1]) + '\n')
 88             file_out.write(line)
 89         
 90         file_out.close()
 91 
 92 
 93 
 94     def do_wordcount(self):
 95         for loop in range(1,121):
 96             file_name = 'chap'+str(loop)+'-words.txt'
 97             file_in = open('E:\\forpython\\chapter2words\\'+file_name,'r',encoding = 'utf-8')
 98             line = file_in.readline()
 99             
100             text = ''
101             while line:
102                 text += line
103                 line = file_in.readline()
104             self.count_words(text,loop)
105             file_in.close()
106     
107     
108 if __name__ == '__main__':
109     processer = textprocesser()
110     processer.divide_into_chapter()
111     processer.do_segmentation()
112     processer.do_wordcount()

文本分类我个人感觉最重要的是选取特征向量,我查阅了相关文献,决定选取五十多个文言虚词和二十多个在120个回合中均出现过的词汇(文言虚词的使用不受情节影响,只与作者写作习惯有关)。下面是生成

特征向量的代码

  1 # -*- coding: utf-8 -*-
  2 import jieba
  3 import re
  4 import string
  5 import collections as coll
  6 jieba.load_userdict('E:\\forpython\\红楼梦词汇大全.txt') # 导入搜狗的红楼梦词库
  7 
  8 class featureVector:
  9     def __init__(self):
 10         pass
 11     
 12      # 去除中文字符函数
 13     def delCNf(self,line):
 14         regex = re.compile('[^\u4e00-\u9fa5a-zA-Z0-9\s]')
 15         return regex.sub('', line)
 16    
 17     
 18     # 对整篇文章分词
 19     def cut_words(self):
 20         red = open('E:\\forpython\\红楼梦.txt','r',encoding = 'utf-8')
 21         file_out = open('E:\\forpython\\红楼梦-词.txt','a',encoding = 'utf-8')
 22         delset = string.punctuation
 23         
 24         line = red.readline()
 25         
 26         while line:
 27             seg_list = jieba.cut(line,cut_all = False)
 28             words = ' '.join(seg_list)
 29             words = words.translate(delset) # 去除英文标点
 30             words = "".join(words.split('\n')) # 去除回车符
 31             words = self.delCNf(words) # 去除中文标点
 32             words = re.sub('[ \u3000]+',' ',words) # 去除多余的空格
 33             file_out.write(words)
 34             line = red.readline()
 35             
 36         file_out.close()
 37         red.close()
 38         
 39     # 统计词频   
 40     def count_words(self):
 41         data = open('E:\\forpython\\红楼梦-词.txt','r',encoding = 'utf-8')
 42         line = data.read()
 43         data.close()
 44         words = line.split()
 45         words_dict = coll.Counter(words) # 生成词频字典
 46         
 47         file_out = open('E:\\forpython\\红楼梦-词频.txt','a',encoding = 'utf-8')
 48         
 49         # 排序后写入文本
 50         sorted_result = sorted(words_dict.items(),key = lambda d:d[1],reverse = True)
 51         for one in sorted_result:
 52             line = "".join(one[0] + '\t' + str(one[1]) + '\n')
 53             file_out.write(line)
 54         
 55         file_out.close()
 56         
 57     
 58         
 59     def get_featureVector(self):
 60         # 将分词后的120个章节文本放入一个列表中
 61         everychapter = []
 62         for loop in range(1,121):
 63             data = open('E:\\forpython\\chapter2words\\chap'+str(loop)+'-words.txt','r',encoding = 'utf-8')
 64             each_chapter = data.read()
 65             everychapter.append(each_chapter)
 66             data.close()
 67         
 68         temp = open('E:\\forpython\\红楼梦-词.txt','r',encoding = 'utf-8')
 69         word_beg = temp.read()
 70         word_beg = word_beg.split(' ')
 71         temp.close()
 72         
 73         # 找出每一个回合都出现的词
 74         cleanwords = []
 75         for loop in range(1,121):
 76             data = open('E:\\forpython\\chapter2words\\chap'+str(loop)+'-words.txt','r',encoding = 'utf-8')
 77             words_list = list(set(data.read().split()))
 78             data.close()
 79             cleanwords.extend(words_list)
 80     
 81         cleanwords_dict = coll.Counter(cleanwords)
 82 
 83         cleanwords_dict = {k:v for k, v in cleanwords_dict.items() if v >= 120}
 84         
 85         cleanwords_f = list(cleanwords_dict.keys())
 86         
 87         xuci = open('E:\\forpython\\文言虚词.txt','r',encoding = 'utf-8')
 88         xuci_list = xuci.read().split()
 89         xuci.close()
 90         featureVector = list(set(xuci_list + cleanwords_f))
 91         featureVector.remove('\ufeff')
 92                 
 93         # 写入文本
 94         file_out = open('E:\\forpython\\红楼梦-特征向量.txt','a',encoding = 'utf-8')
 95         for one in featureVector:
 96             line = "".join(one+ '\n')
 97             file_out.write(line)
 98         
 99         file_out.close()
100         return(featureVector)
101         
102 if __name__ == '__main__':
103     vectorbuilter = featureVector()
104     vectorbuilter.cut_words()
105     vectorbuilter.count_words()
106     vectorbuilter.get_featureVector()

朴素贝叶斯文本分类就是用特征向量的词频作为每个回合的代表(偷个懒,直接截图答辩的ppt)

用特征向量把所有一百二十个回合向量化后,你会得到120×70的一个数组。接下来就简单了。直接挑选训练集,在这我是在前80回中挑选了20至29回标记为第一类(用数字1表示),并将其作为第一类的训练集;在后80回合中挑选了110至119回标记为第二类(用数字2表示),并将其作为第二类的训练集。

 1 # -*- coding: utf-8 -*-
 2 
 3 import numpy as np
 4 from sklearn.naive_bayes import MultinomialNB
 5 import get_trainset as ts
 6 x_train = ts.get_train_set().get_all_vector()
 7 
 8 
 9 
10 class result:
11     def __inti__(self):
12         pass
13     
14     def have_Xtrainset(self):
15         Xtrainset = x_train
16         Xtrainset = np.vstack((Xtrainset[19:29],Xtrainset[109:119]))
17         return(Xtrainset)   
18     
19     def as_num(self,x):
20         y='{:.10f}'.format(x)
21         return(y)
22     
23     def built_model(self):
24         x_trainset = self.have_Xtrainset()
25         y_classset = np.repeat(np.array([1,2]),[10,10])
26         
27         NBclf = MultinomialNB()
28         NBclf.fit(x_trainset,y_classset) # 建立模型
29         
30         all_vector = x_train
31         
32         result = NBclf.predict(all_vector)
33         print(''+str(len(result[0:80]))+'回分类结果为:')
34         print(result[0:80])
35         print(''+str(len(result[80:121]))+'回分类结果为:')
36         print(result[80:121])
37        
38         diff_chapter = [80,81,83,84,87,88,90,100]
39         for i in diff_chapter:
40             tempr = NBclf.predict_proba(all_vector[i])
41             print(''+str(i+1)+'回的分类概率为: ')
42             print(str(self.as_num(tempr[0][0]))+' '+str(self.as_num(tempr[0][1])))
43 
44         
45 if __name__ == '__main__':
46     res = result()
47     res.built_model()

上面是直接调用了skit-learn的MultinomialNB函数,详细情况我在前一篇中讲过。

得到分类结果:

 

从最终的分类结果来看,在第82回合左右是有一个比较明显的分界点,这样看来前80回合与后40回合在写作风格上还是有显著的差异的,这个结果和红楼梦学术界的年的推断比较一致。

至于为何在后40回中有8个回合被分到1类中,这8个回合分别是81回、82回、84回、85回、88回、89回、91回还有101回,都是在第80回合附近,这个差异有可能是由于上下文的衔接所导致的,因为本文所使用的《红楼梦》文本是从网上下载得到的,,版本不明,所以也有可能是由于红楼梦的版本所导致的。

代码肯定还有很多可以优化的地方,在这里献丑了。。。。

转载于:https://www.cnblogs.com/hahaxzy9500/p/6945909.html

这篇关于朴素贝叶斯文本分类-在《红楼梦》作者鉴别的应用上(python实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/245442

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服