Golang GMP调度模型:实现高效协程调度和执行

2023-10-20 02:20

本文主要是介绍Golang GMP调度模型:实现高效协程调度和执行,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

Go语言(Golang)是一种开源的高性能编程语言,它以其独特的并发模型而闻名。Golang引入了一种称为GMP的调度模型,用于实现协程的高效调度和执行。本文将深入探讨Golang GMP调度模型的概念、用法、适用场景,并通过案例分析来展示其在实际应用中的优势。通过阅读本文,读者将更好地理解Golang的协程调度机制,并能够编写高效的并发程序。

概念

GMP调度模型是Golang并发编程模型的核心之一,它由三个关键组件组成:Goroutine(G)、M(Machine)和P(Processor)。Goroutine是Golang中的轻量级线程,每个协程代表一个并发执行的任务。M代表操作系统线程,负责实际执行Goroutine。P代表处理器,维护一组协程的运行队列。

用法

Golang的调度器是由运行时系统自动管理的,开发者无需手动控制协程的调度和执行。通过关键字go,开发者可以创建协程,并编写相应的逻辑。调度器会根据运行时系统的策略来实现协程的调度和执行。当一个Goroutine被创建时,它会被放入全局运行队列中。当一个M变为可运行状态时,它会从全局运行队列中获取一个可运行的Goroutine,并将其绑定到自己的线程上执行。如此循环,实现了高效的协程调度和执行。

package mainimport "fmt"func main() {go func() {fmt.Println("Hello, World!")}()// 等待协程执行完成// ...
}

场景

Golang的GMP调度模型非常适用于高并发和高吞吐量的场景。它能够自动均衡地分配Goroutine的执行,使得多个线程和处理器能够充分利用资源,提高程序的并发性能。特别在I/O密集型和并行计算的应用中,GMP模型能够充分发挥其优势。

案例

假设我们有一个网络爬虫程序,需要并发地从多个网站上爬取数据。传统的实现方式是使用多线程,但是线程的创建和销毁开销较大,容易造成资源浪费。通过使用Golang的GMP调度模型,我们可以优雅地解决这个问题。

首先,我们创建一个Goroutine来执行爬取网站的任务。这个Goroutine会将获取到的数据发送到一个通道中。我们同时创建多个Goroutine来处理这个通道中的数据。

当一个Goroutine在爬取网站时,如果发生了阻塞(比如等待I/O),调度器会将其从当前线程解绑,并将其放入等待队列中。这时,该线程可以执行其他可运行的Goroutine,以充分利用计算资源。

当一个阻塞的Goroutine变为可运行状态时(比如I/O操作完成),它会重新被放入全局运行队列中,等待被分配给某个可用的M执行。这样,我们可以实现高效的并发爬取,并充分利用系统的资源。

package mainimport ("fmt""net/http""io/ioutil""sync"
)func main() {urls := []string{"http://example.com", "http://example.org", "http://example.net"}var wg sync.WaitGroupfor _, url := range urls {wg.Add(1)go func(u string) {defer wg.Done()resp, err := http.Get(u)if err != nil {fmt.Println("Error:", err)return}defer resp.Body.Close()body, err := ioutil.ReadAll(resp.Body)if err != nil {fmt.Println("Error:", err)return}fmt.Printf("Response from %s: %s\n", u, body)}(url)}wg.Wait()
}

案例一:并发计算

假设我们有一个需要计算大量数值的任务,我们可以使用Golang的GMP调度模型来实现并发计算,提高计算效率。

package mainimport ("fmt""sync"
)func main() {numbers := []int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}var wg sync.WaitGroupfor _, num := range numbers {wg.Add(1)go func(n int) {defer wg.Done()result := n * nfmt.Printf("Square of %d is %d\n", n, result)}(num)}wg.Wait()
}

在上述例子中,我们创建了一个包含10个数值的切片。然后,我们使用sync.WaitGroup来同步并发计算任务的完成。对于每个数值,我们创建一个Goroutine来执行计算操作。每个Goroutine计算完毕后,通过defer wg.Done()来通知sync.WaitGroup任务已完成。最后,通过wg.Wait()来等待所有任务完成。

案例二:并发网络请求

假设我们需要从多个URL中获取数据,我们可以使用Golang的GMP调度模型来实现并发网络请求,提高获取数据的效率。

package mainimport ("fmt""io/ioutil""net/http""sync"
)func main() {urls := []string{"http://example.com", "http://example.org", "http://example.net"}var wg sync.WaitGroupfor _, url := range urls {wg.Add(1)go func(u string) {defer wg.Done()resp, err := http.Get(u)if err != nil {fmt.Printf("Error fetching %s: %v\n", u, err)return}defer resp.Body.Close()body, err := ioutil.ReadAll(resp.Body)if err != nil {fmt.Printf("Error reading response body from %s: %v\n", u, err)return}fmt.Printf("Response from %s: %s\n", u, body)}(url)}wg.Wait()
}

在上述例子中,我们创建了一个包含3个URL的切片。然后,我们使用sync.WaitGroup来同步并发网络请求任务的完成。对于每个URL,我们创建一个Goroutine来执行网络请求操作。每个Goroutine完成请求后,通过defer wg.Done()来通知sync.WaitGroup任务已完成。最后,通过wg.Wait()来等待所有任务完成。

案例三:并发文件处理

假设我们有一个包含多个文件名的切片,我们可以使用Golang的GMP调度模型来并发地处理这些文件,提高文件处理的效率。

package mainimport ("fmt""io/ioutil""sync"
)func main() {files := []string{"file1.txt", "file2.txt", "file3.txt"}var wg sync.WaitGroupfor _, file := range files {wg.Add(1)go func(f string) {defer wg.Done()data, err := ioutil.ReadFile(f)if err != nil {fmt.Printf("Error reading file %s: %v\n", f, err)return}fmt.Printf("Contents of %s:\n%s\n", f, data)}(file)}wg.Wait()
}

在上述例子中,我们创建了一个包含3个文件名的切片。然后,我们使用sync.WaitGroup来同步并发文件处理任务的完成。对于每个文件名,我们创建一个Goroutine来执行文件处理操作。每个Goroutine完成处理后,通过defer wg.Done()来通知sync.WaitGroup任务已完成。最后,通过wg.Wait()来等待所有任务完成。

通过以上三个案例,我们可以看到Golang的GMP调度模型在并发计算、并发网络请求和并发文件处理等场景下的优势。使用Golang的协程和调度器,我们可以编写高效的并发程序。

总结

Golang的GMP调度模型是实现高效协程调度和执行的核心机制。通过合理利用Goroutine、M和P的关系,调度器能够自动均衡地分配协程的执行,提高程序的并发性能。GMP模型适用于高并发和高吞吐量的场景,特别适合于I/O密集型和并行计算的应用。通过本文的介绍,读者可以更好地理解Golang的协程调度机制,并能够编写高效的并发程序。

这篇关于Golang GMP调度模型:实现高效协程调度和执行的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/243978

相关文章

C# string转unicode字符的实现

《C#string转unicode字符的实现》本文主要介绍了C#string转unicode字符的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录1. 获取字符串中每个字符的 Unicode 值示例代码:输出:2. 将 Unicode 值格式化

python安装whl包并解决依赖关系的实现

《python安装whl包并解决依赖关系的实现》本文主要介绍了python安装whl包并解决依赖关系的实现,文中通过图文示例介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 目录一、什么是whl文件?二、我们为什么需要使用whl文件来安装python库?三、我们应该去哪儿下

Python脚本实现图片文件批量命名

《Python脚本实现图片文件批量命名》这篇文章主要为大家详细介绍了一个用python第三方库pillow写的批量处理图片命名的脚本,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言源码批量处理图片尺寸脚本源码GUI界面源码打包成.exe可执行文件前言本文介绍一个用python第三方库pi

Java中将异步调用转为同步的五种实现方法

《Java中将异步调用转为同步的五种实现方法》本文介绍了将异步调用转为同步阻塞模式的五种方法:wait/notify、ReentrantLock+Condition、Future、CountDownL... 目录异步与同步的核心区别方法一:使用wait/notify + synchronized代码示例关键

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

Nginx实现动态封禁IP的步骤指南

《Nginx实现动态封禁IP的步骤指南》在日常的生产环境中,网站可能会遭遇恶意请求、DDoS攻击或其他有害的访问行为,为了应对这些情况,动态封禁IP是一项十分重要的安全策略,本篇博客将介绍如何通过NG... 目录1、简述2、实现方式3、使用 fail2ban 动态封禁3.1 安装 fail2ban3.2 配

Java中实现订单超时自动取消功能(最新推荐)

《Java中实现订单超时自动取消功能(最新推荐)》本文介绍了Java中实现订单超时自动取消功能的几种方法,包括定时任务、JDK延迟队列、Redis过期监听、Redisson分布式延迟队列、Rocket... 目录1、定时任务2、JDK延迟队列 DelayQueue(1)定义实现Delayed接口的实体类 (

springboot的调度服务与异步服务使用详解

《springboot的调度服务与异步服务使用详解》本文主要介绍了Java的ScheduledExecutorService接口和SpringBoot中如何使用调度线程池,包括核心参数、创建方式、自定... 目录1.调度服务1.1.JDK之ScheduledExecutorService1.2.spring

将java程序打包成可执行文件的实现方式

《将java程序打包成可执行文件的实现方式》本文介绍了将Java程序打包成可执行文件的三种方法:手动打包(将编译后的代码及JRE运行环境一起打包),使用第三方打包工具(如Launch4j)和JDK自带... 目录1.问题提出2.如何将Java程序打包成可执行文件2.1将编译后的代码及jre运行环境一起打包2

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1