⚽ 使用 KNIME 分析足球比赛数据

2023-10-20 01:59

本文主要是介绍⚽ 使用 KNIME 分析足球比赛数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

视觉分析足球比赛数据的成功传球可以提供有价值的信息,帮助教练和球队经理制定明智的改进决策,以提升球队表现。

如何通过使用 KNIME 分析传球数据来提升足球球队的表现?

原始数据

我们拥有一组记录曼联和曼城足球比赛期间各种类型传球数据的原始数据。数据示例如下:

id minute second teamId h_a type outcomeType x y endX endY
2.390970831E9 16 50.0 ManchesterUnited a Pass Unsuccessful 28.5 10.3 28.5 13.5
2.390970839E9 16 51.0 ManchesterCity h BallRecovery Successful 67.2 86.6 ? ?
2.390970881E9 16 52.0 ManchesterCity h Pass Successful 65.9 84.7 74.1 71.7
2.390970893E9 16 54.0 ManchesterUnited a Challenge Unsuccessful 22.4 27.4 ? ?
2.390970935E9 16 54.0 ManchesterCity h TakeOn Successful 77.6 72.6 ? ?
2.390970939E9 16 56.0 ManchesterCity h SavedShot Successful 92.7 67.6 ? ?
2.390970929E9 16 56.0 ManchesterUnited a Save Successful 2.0 46.4 ? ?
2.390971023E9 16 58.0 ManchesterUnited a Foul Successful 8.1 46.8 ? ?

字段说明:

  • id:每个事件的唯一标识符。可能是通过自动视频分析获得的编号。
  • minute, second:该足球事件发生的时间。
  • teamId:比赛双方的名字,分别是曼城和曼联队。
  • h_a:表示事件是在主场还是客场发生。使用主场或客场信息,可以了解球队的表现是否因比赛场地而异。
  • type:描述事件类型的列,例如传球、射门、进球等。type 列告诉我们比赛过程中发生了什么。
  • outcomeType:表示 type 列中提到的特定事件的结果是成功还是失败。
  • x, y:提供事件开始时在球场上的位置的坐标。
  • endX, endY:表示事件发生后球所去位置的坐标。例如,如果事件是传球 pass,该字段将提供接球者的位置坐标。

分析师可以通过检查比赛的类型、结果和位置,深入了解球队的整体战略和球员的个人表现。从该数据集中可以提取的一些见解包括:识别主要带球向前的球员、跨场地不同部分移动球的速度以及每支球队更倾向于在比赛中注重哪一侧的球场。此外,我们还可以将单个比赛的数据堆叠到更大的数据集中,并使用它来深入了解球队在一段时间内的表现。为了达到这个目的,需要对数据进行细致的整理和分析,以揭示隐藏在其中的价值。

足球数据事件类型 type

虽然我们最终只分析了传球数据,但我们可以先大致浏览一下原始数据中还包括哪些事件类型,以便于以后可能的进一步探讨。总共有近三十种不同类型的足球数据事件类型,下面列举其中几种以供参考:

Pass 传球

传球是足球比赛中最为基础和常见的动作之一。它是指球员通过踢球将球传给队友,从而实现进攻和控制比赛的方式。传球类型用于记录球员在比赛中完成传球的次数。在足球比赛中,传球的精准度和速度对球队的进攻质量和比赛节奏有着重要的影响。

Punch 拳击球

拳击球是守门员在比赛中使用拳头进行的一种扑救方式,用于将球从危险区域解救出来。出拳类型用于跟踪守门员在比赛中使用这种扑救方式的次数。在足球比赛中,守门员的拳击球技术和判断能力对于保护球门和防止进球是至关重要的。

Aerial 空中球

空中球是一种用于衡量球员赢得高空球或空中球次数的足球数据。无论是在比赛中的角球、任意球、球门球期间还是在常规的比赛中,赢得空中对抗的能力都是现代足球的重要技能之一。特别是在中后卫或防守型中场等防守位置上,头球技术和空中占领力是球员必备的技能之一。球员的空中占领力和头球技术对于反击和防守定位球都有着重要的影响。

BallTouch 触球

触球数据用于分析球员在比赛中参与进攻和控制比赛的效率。球员越是经常触球,通常就越是球队进攻的组织者和核心。触球数据记录每位球员在比赛中触球的次数和频率,它可以帮助教练和分析师更好地理解球员的角色和贡献。

BlockedPass 封堵传球

成功的封堵传球是防守球员阻止对方进攻的关键。BlockedPass 数据用于记录防守球员在比赛中成功封堵对方传球的次数。这个数据特征对于分析防守球员的表现和情况非常有价值,并且可以帮助教练和球队制定更好的防守策略。

Card 红牌或黄牌警告

Card是记录球员在比赛中得到的罚牌(红牌或黄牌)的数据特征。黄牌或红牌的数量可以反映球员的纪律和体育精神等方面的情况。大量的黄牌或红牌通常会影响球队的比赛表现和成绩,因此需要教练和球员合理管理情绪和比赛状态。

Tackle 抢断

Tackle是指球员从对手手中夺回球权的一种方式。足球数据中的Tackle类型记录球员尝试通过滑铲或站立铲球等方式从对手手中夺回球权的次数。成功的Tackle可以扰乱对手的进攻并且开启球队的反击,同时也可以提高球队的防守效率。需要注意的是,Tackle的危险性较高,如果时间不当或用力过大可能会导致违规,进而吃到黄牌或红牌。因此,球员需要在比赛中合理运用 Tackle 技巧。

好了,动手吧

我们只分析传球数据,即 pass 类型。具体步骤如下:

  1. 读取数据并过滤出 pass 类型的数据。
  2. 通过使用 slider 控件,可选择时间段进行分析。
  3. 将成功和失败的传球数据分开以便进行比较。
  4. 将两个队伍的传球数据分开,以便于分析和对比。
  5. 使用 Matplotlib 可视化数据。
alt
alt
alt

在可视化数据中,我们可以看出曼城队在比赛开始的5分钟内只在后场传球。同时,通过曼联的传球数据我们也可以看出他们采取了一种压迫性的打法,导致曼城队不得不在后场倒脚。

除此之外,我们还可以看出一些传球失败,并非完全是传球技巧问题,而是由于解围等原因导致的。例如,在比赛进行的前 5分钟,在底线附近的一次传球失败,很可能是在解围时出现的。

这里只是展示了 5 分钟的可视化数据,显然我们可以在不同的时间范围内,使用更多种类的足球数据进行详细分析。

其他的一些想法

  • Matplotlib 可以提供丰富的绘图工具,但相对较耗时。
  • 在此情境下,二维密度图和旭日图是不错的可视化选择。 alt
  • 传球成功的因素众多,除了通行证,还有其他类型的数据需要进行分析,但时间有限。
  • 这是 Just KNIME It 第2季第7集的问题,有兴趣可以去论坛看下其他人的方案
    • Just KNIME It: https://www.knime.com/just-knime-it
    • 第2季第7集论坛讨论: https://forum.knime.com/t/solutions-to-just-knime-it-challenge-07-season-2/66844

广告: 指北君出版了一本书, <<KNIME 视觉化数据分析>>, 纸质版、电子版各大平台均有销售,欢迎阅读。[2023/05/16: 微信读书的版本错别字问题出版社还未解决,请耐心等待]

本文由 mdnice 多平台发布

这篇关于⚽ 使用 KNIME 分析足球比赛数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/243841

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置