B-spline Curves 学习之B样条基函数计算实例(3)

2023-10-19 20:10

本文主要是介绍B-spline Curves 学习之B样条基函数计算实例(3),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

             B-spline Basis Functions: Computation Examples

1. 简单节点(Simple Knots )

  假设节点向量是U = { 0, 0.25, 0.5, 0.75, 1 }. 因此, m = 4 和u0 = 0, u1 = 0.25, u2 = 0.5, u3 = 0.75 及 u4 = 1。0次(degree)基函数很简单。 它们分别是定义在节点跨度 [0,0.25,), [0.25,0.5), [0.5,0.75) 和 [0.75,1)上的N0,0(u), N1,0(u), N2,0(u)和N3,0(u) ,如下图所示。

  

下表给出了所有的Ni,1(u):

  

  接着展示这些基函数的图形。因为内节点0.25, 0.5和0.75都是简单的(即, k = 1) 且p = 1,有p - k + 1 = 1非零基函数和三个节点。 而且, N0,1(u), N1,1(u) 和 N2,1(u)在节点0.25, 0.5 和 0.75分别是C0 连续的。

  

  从Ni,1(u)可计算2次基函数。因此m = 4, p = 2, 和 m = n + p + 1,我们有n = 1所以只有两个2次基函数:N0,2(u)和 N1,2(u). 结果见下表:

  

  下图显示了两个基函数。三条垂直蓝线表示节点位置。注意每个基函数是三个2次曲线段的组合曲线。例如,N0,2(u) 是绿色曲线,其是定义在[0,0.25), [0.25, 0.5) 和 [0.5,0.75)上的三个抛物线的联合。这些曲线段连接在一起形成一个光滑的钟形。请验证 N0,2(u,) (resp.N1,2(u)) 在节点 0.25 和 0.5 (resp., 0.5 和 0.75)是C1 连续的。如前页所提到的,在节点处,这个复合曲线是C1 连续的。

  

 

2. 带正重复度的节点

  如果一个节点向量包含有正重复度的节点,我们会遇到 0/0的情况,后面会遇到。因此我们定义 0/0 等于0。 幸运的是,这只用于手工计算的情况。对计算机实现,有个有效的算法,不受这个问题影响。如果ui 是重复度 k 的节点(即ui = ui+1 = ... = ui+k-1), 那么节点区间[ui,ui+1), [ui+1,ui+2), ..., [ui+k-2,ui+k-1) 不存在,结果是,Ni,0(u), Ni+1,0(u), ..., Ni+k-1,0(u) 都是零函数。

  考虑节点向量 U = { 0, 0, 0, 0.3, 0.5, 0.5, 0.6, 1, 1, 1 }. 因此,0 和1 是重复度3 (即, 0(3)和  1(3)) 而 0.5 是重复度2 (即, 0.5(2)). 结果是, m = 9而节点分配是

  

  现在计算 Ni,0(u)。 注意因为 m = 9 且 p = 0 ( 0 次基函数), 我们有n = m - p - 1 = 8。如下表所示,只有四个0次非零基函数: N2,0(u), N3,0(u), N5,0(u) 和 N6,0(u).

  

然后,我们继续计算1次基函数。因为 p 为 1, n = m - p - 1 = 7. 下表显示了结果:

  

  下图显示了这些基函数的图形。

  

  让我们看一个特别的计算,比如N1,1(u). 。它使用下式计算的:

  

  将u1 = u2 = 0 和 u3 = 0.3 代入这个方程产生下式:

  

  因为 N1,0(u) 到处为零,第一项是0/0 因此被定义为零。因而,只有第二项对结果有影响。因为 N2,0(u) 在[0,0.3)上是1, N1,1(u) 在 [0,0.3)上是1 - (10/3)u  。

  接着,让我们计算所有的Ni,2(u)。因为 p = 2, 我们有 n = m - p - 1 = 6。下表包含了所有的Ni,2(u):

  

  下图显示了所有2次基函数。

  

  让我们选一个典型的计算作为例子,如N3,2(u)。计算式是下式:

  

  代入 u3 = 0.3, u4 = u5 = 0.5 和 u6 = 0.6得到

  

  因为 N3,1(u) 在 [0.3, 0.5)上非零且等于5u - 1.5,(5u - 1.5)2 是N3,2(u) 在[0.3, 0.5)上的非零部分。因为N4,1(u) 在 [0.5, 0.6)上非零且等于6 - 10u, (6 - 10u)2 是 N3,2(u) 在[0.5, 0.6)上的非零部分。

  让我们研究在节点0.5(2)处的连续问题。因为它的重复度是2 且这些基函数的次数是 2, 基函数 N3,2(u) 在0.5(2)处是C0 连续的。这就是为什么N3,2(u) 在0.5(2)处有个尖锐的角。对不在两个端点处的节点,例如 0.3,保持了 C1 连续性因为它们都是简单节点。

 

这篇关于B-spline Curves 学习之B样条基函数计算实例(3)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/242092

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

poj 1113 凸包+简单几何计算

题意: 给N个平面上的点,现在要在离点外L米处建城墙,使得城墙把所有点都包含进去且城墙的长度最短。 解析: 韬哥出的某次训练赛上A出的第一道计算几何,算是大水题吧。 用convexhull算法把凸包求出来,然后加加减减就A了。 计算见下图: 好久没玩画图了啊好开心。 代码: #include <iostream>#include <cstdio>#inclu

uva 1342 欧拉定理(计算几何模板)

题意: 给几个点,把这几个点用直线连起来,求这些直线把平面分成了几个。 解析: 欧拉定理: 顶点数 + 面数 - 边数= 2。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#inc

uva 11178 计算集合模板题

题意: 求三角形行三个角三等分点射线交出的内三角形坐标。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstring>#include <cmath>#include <stack>#include <vector>#include <