刘二大人《PyTorch深度学习实践》循环神经网络RNN高级篇

本文主要是介绍刘二大人《PyTorch深度学习实践》循环神经网络RNN高级篇,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

个人认为RNN的两个视频讲的没有前面几个视频通俗易懂

任务:输入名字,输出名字对应的国家

模型

########################################### 题外话  本次使用了双向循环神经网络

Bi-Direction RNN/LSTM/GRU  双向循环神经网络

对于单向的循环神经网络,输出只考虑过去的信息(只有一个方向),而有些情景需要考虑未来的信息

将正向和反向的隐藏层做拼接

output=h_0,h_1,...,h_N\\hidden = \begin{bmatrix}{h_N^f,h_N^b} \end{bmatrix}

###############################################################

着重解释   数据处理部分

输入单词,先转变成序列,因为都是英文字符所以使用ascll表

若对于'M'使用独热向量,则77表示只有第77个元素为1(过于稀疏)

对于张量。要求所有的张量维度相等,所以需要padding填充

  对于国家名,处理成索引标签

对padding后的矩阵转置再经过Embedding

对于变长序列,按序列长度排序后(不排序没法用PackedSequence),通过PackedSequence只存非0的维度,同时记住每个序列的非0项的长度(提高储存密度,提高计算速度),输入gru中

代码实现:

def make_tensors

先把名字的ascll和长度、国家取出

然后设置一个全0张量尺寸  (batchsize,seq_lengths.max())

再把数据覆盖上去

然后按序列长度从大到小排序,同时把countries列表也转成相应的从大到小格式

最后输出tensor格式的seq_tensor、seq_lengths、countries

这样在训练时,seq_tensor、seq_lengths会传入模型

使用  

gru_input = pack_padded_sequence(embedding,seq_lengths) 
pack_padded_sequence()将会自动根据序列长度去掉0项

##################################################################

全文代码实现

import torch
import csv
from torch.utils.data import DataLoader,Dataset
from torch.nn.utils.rnn import pack_padded_sequence
import matplotlib.pyplot as plt
# 输入姓名 输出属于哪个国家
import gzip
import timeHIDDEN_SIZE = 100
BATCH_SIZE = 1024
N_LAYER = 2
N_EPOCHS = 100
N_CHARS = 128
USE_GPU = False
start = time.time()#############################################################################    读入数据
class NameDataset(Dataset):def __init__(self,is_train_set=True):filename = './names_train.csv' if is_train_set else './names_test.csv'with open (filename,'rt') as f:reader = csv.reader(f)rows = list(reader)self.names = [row[0] for row in rows]  #第一列人名self.len = len(self.names)  #名字长度self.countries = [row[1] for row in rows]   #对应国家名self.country_list = list(sorted(set(self.countries))) #对国家名长度排序self.country_dict = self.getCountryDict()  #构造字典 key:国家名 value:indexself.country_num = len(self.country_list)  #国家个数def __getitem__(self, index):     #必须重写__getitem__和__len__方法return self.names[index],self.country_dict[self.countries[index]]def __len__(self):return self.lendef getCountryDict(self):country_dict = dict()for idx,country_name in enumerate(self.country_list,0):country_dict[country_name] = idxreturn country_dictdef idx2country(self,index):return  self.country_list[index]def getCountriesNum(self):return self.country_numtrainset = NameDataset(is_train_set=True)
trainloader = DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True)
testset = NameDataset(is_train_set=False)
testloader = DataLoader(testset, batch_size=BATCH_SIZE, shuffle=True)N_COUNTRY = trainset.getCountriesNum()##############################################################################      模型class RNNClassifier(torch.nn.Module):def __init__(self,input_size,hidden_size,output_size,n_layers=1,bidirectional=True):super(RNNClassifier,self).__init__()self.hidden_size = hidden_sizeself.n_layers=n_layersself.n_directions = 2 if bidirectional else 1  #单向还是双向循环神经网络self.embedding = torch.nn.Embedding(input_size,hidden_size)self.gru = torch.nn.GRU(hidden_size,hidden_size,n_layers,bidirectional=bidirectional)self.fc = torch.nn.Linear(hidden_size*self.n_directions,output_size) #如果是双向则维度*2def _init_hidden(self,batch_size):hidden = torch.zeros(self.n_layers*self.n_directions,batch_size,self.hidden_size)return create_tensor(hidden)def forward(self,input,seq_lengths):#input shape Batchsize*SeqLen->SeqLen*Batchsizeinput = input.t()  #矩阵转置batch_size = input.size(1)hidden = self._init_hidden(batch_size)embedding = self.embedding(input)# pack them upgru_input = pack_padded_sequence(embedding,seq_lengths)  ### make be sorted by descendent  打包变长序列output , hidden = self.gru(gru_input,hidden)if self.n_directions == 2:hidden_cat = torch.cat([hidden[-1],hidden[-2]],dim=1)else:hidden_cat = hidden[-1]fc_output = self.fc(hidden_cat)return fc_output############################################################################   数据处理
def create_tensor(tensor):if USE_GPU:device = torch.device("cuda:0")tensor = tensor.to(device)return tensordef name2list(name):   #返回ascll值和长度arr = [ord(c) for c in name]return arr, len(arr)def make_tensors(names,countries):sequences_and_lengths = [name2list(name) for name in names]name_sequences = [sl[0] for sl in sequences_and_lengths]  #名字的ascll值seq_lengths = torch.LongTensor([sl[1] for sl in sequences_and_lengths]) #单独把列表长度拿出来 (名字的长度)countries = countries.long()#make tensor of name,BatchSize x SeqLen   paddingseq_tensor = torch.zeros(len(name_sequences),seq_lengths.max()).long()   #先做一个batchsize*max(seq_lengths)全0的张量for idx,(seq,seq_len) in enumerate(zip(name_sequences,seq_lengths),0):seq_tensor[idx,:seq_len]= torch.LongTensor(seq)   #把数据贴到全0的张量上去#sort by length to use pack_padded_sequenceseq_lengths,perm_idx = seq_lengths.sort(dim=0,descending=True)   #sort返回排完序的序列和对应的indexseq_tensor = seq_tensor[perm_idx]countries = countries[perm_idx]return create_tensor(seq_tensor),\create_tensor(seq_lengths),\create_tensor(countries)############################################################################     训练测试模块
def trainModel():total_loss = 0for i,(names,countries) in enumerate(trainloader,1):inputs,seq_lengths,target  = make_tensors(names,countries)output = classifier(inputs,seq_lengths)loss = criterion(output,target)optimizer.zero_grad()loss.backward()optimizer.step()total_loss+=loss.item()if i%10==0:print(f'[{time_since(start)}] Epoch{epoch}',end='')print(f'[{i*len(inputs)}/{ len(trainset)}]',end='')print(f'loss={total_loss/(i*len(inputs))}')return total_lossdef testModel():correct = 0total = len(testset)print("evaluating trained model...")with torch.no_grad():for i,(names,countrise) in enumerate(testloader,1):inputs,seq_lengths,target = make_tensors(names,countrise)output = classifier(inputs,seq_lengths)pred = output.max(dim = 1,keepdim=True)[1]correct+=pred.eq(target.view_as(pred)).sum().item()percent = '%.2f'%(100*correct/total)print(f'Test set:Accuracy {correct}/{total} {percent}%')return correct/totaldef time_since(start):"""计算给定时间戳 `start` 与当前时间之间的时间差"""return time.time() - startif __name__=='__main__':classifier = RNNClassifier(N_CHARS, HIDDEN_SIZE, N_COUNTRY, N_LAYER)device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')if USE_GPU:device = torch.device("cuda:0")classifier.to(device)criterion = torch.nn.CrossEntropyLoss()optimizer = torch.optim.Adam(classifier.parameters(), lr=0.001)print("Training for %d epochs..." % N_EPOCHS)acc_list = []epoch_list=[]for epoch in range(1,N_EPOCHS+1):trainModel()acc=testModel()acc_list.append(acc)epoch_list.append(epoch)plt.plot(epoch_list,acc_list)plt.ylabel('Accuracy')plt.xlabel('epoch')plt.grid()plt.show()

#################################################################

使用该模型参加kaggle的电影评论分析比赛(第一次在kaggle提交数据)

Sentiment Analysis on Movie Reviews | Kaggle

最终准确率

movie_Submission使用双向循环网络

movie_Submission_2不使用双向循环网络

准确率较差,因为我没有语义分割而是直接把文本变成Ascii码进行训练

这篇关于刘二大人《PyTorch深度学习实践》循环神经网络RNN高级篇的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/242031

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

SpringCloud动态配置注解@RefreshScope与@Component的深度解析

《SpringCloud动态配置注解@RefreshScope与@Component的深度解析》在现代微服务架构中,动态配置管理是一个关键需求,本文将为大家介绍SpringCloud中相关的注解@Re... 目录引言1. @RefreshScope 的作用与原理1.1 什么是 @RefreshScope1.

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

springboot集成Deepseek4j的项目实践

《springboot集成Deepseek4j的项目实践》本文主要介绍了springboot集成Deepseek4j的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录Deepseek4j快速开始Maven 依js赖基础配置基础使用示例1. 流式返回示例2. 进阶

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Python循环缓冲区的应用详解

《Python循环缓冲区的应用详解》循环缓冲区是一个线性缓冲区,逻辑上被视为一个循环的结构,本文主要为大家介绍了Python中循环缓冲区的相关应用,有兴趣的小伙伴可以了解一下... 目录什么是循环缓冲区循环缓冲区的结构python中的循环缓冲区实现运行循环缓冲区循环缓冲区的优势应用案例Python中的实现库