刘二大人《PyTorch深度学习实践》循环神经网络RNN高级篇

本文主要是介绍刘二大人《PyTorch深度学习实践》循环神经网络RNN高级篇,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

个人认为RNN的两个视频讲的没有前面几个视频通俗易懂

任务:输入名字,输出名字对应的国家

模型

########################################### 题外话  本次使用了双向循环神经网络

Bi-Direction RNN/LSTM/GRU  双向循环神经网络

对于单向的循环神经网络,输出只考虑过去的信息(只有一个方向),而有些情景需要考虑未来的信息

将正向和反向的隐藏层做拼接

output=h_0,h_1,...,h_N\\hidden = \begin{bmatrix}{h_N^f,h_N^b} \end{bmatrix}

###############################################################

着重解释   数据处理部分

输入单词,先转变成序列,因为都是英文字符所以使用ascll表

若对于'M'使用独热向量,则77表示只有第77个元素为1(过于稀疏)

对于张量。要求所有的张量维度相等,所以需要padding填充

  对于国家名,处理成索引标签

对padding后的矩阵转置再经过Embedding

对于变长序列,按序列长度排序后(不排序没法用PackedSequence),通过PackedSequence只存非0的维度,同时记住每个序列的非0项的长度(提高储存密度,提高计算速度),输入gru中

代码实现:

def make_tensors

先把名字的ascll和长度、国家取出

然后设置一个全0张量尺寸  (batchsize,seq_lengths.max())

再把数据覆盖上去

然后按序列长度从大到小排序,同时把countries列表也转成相应的从大到小格式

最后输出tensor格式的seq_tensor、seq_lengths、countries

这样在训练时,seq_tensor、seq_lengths会传入模型

使用  

gru_input = pack_padded_sequence(embedding,seq_lengths) 
pack_padded_sequence()将会自动根据序列长度去掉0项

##################################################################

全文代码实现

import torch
import csv
from torch.utils.data import DataLoader,Dataset
from torch.nn.utils.rnn import pack_padded_sequence
import matplotlib.pyplot as plt
# 输入姓名 输出属于哪个国家
import gzip
import timeHIDDEN_SIZE = 100
BATCH_SIZE = 1024
N_LAYER = 2
N_EPOCHS = 100
N_CHARS = 128
USE_GPU = False
start = time.time()#############################################################################    读入数据
class NameDataset(Dataset):def __init__(self,is_train_set=True):filename = './names_train.csv' if is_train_set else './names_test.csv'with open (filename,'rt') as f:reader = csv.reader(f)rows = list(reader)self.names = [row[0] for row in rows]  #第一列人名self.len = len(self.names)  #名字长度self.countries = [row[1] for row in rows]   #对应国家名self.country_list = list(sorted(set(self.countries))) #对国家名长度排序self.country_dict = self.getCountryDict()  #构造字典 key:国家名 value:indexself.country_num = len(self.country_list)  #国家个数def __getitem__(self, index):     #必须重写__getitem__和__len__方法return self.names[index],self.country_dict[self.countries[index]]def __len__(self):return self.lendef getCountryDict(self):country_dict = dict()for idx,country_name in enumerate(self.country_list,0):country_dict[country_name] = idxreturn country_dictdef idx2country(self,index):return  self.country_list[index]def getCountriesNum(self):return self.country_numtrainset = NameDataset(is_train_set=True)
trainloader = DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True)
testset = NameDataset(is_train_set=False)
testloader = DataLoader(testset, batch_size=BATCH_SIZE, shuffle=True)N_COUNTRY = trainset.getCountriesNum()##############################################################################      模型class RNNClassifier(torch.nn.Module):def __init__(self,input_size,hidden_size,output_size,n_layers=1,bidirectional=True):super(RNNClassifier,self).__init__()self.hidden_size = hidden_sizeself.n_layers=n_layersself.n_directions = 2 if bidirectional else 1  #单向还是双向循环神经网络self.embedding = torch.nn.Embedding(input_size,hidden_size)self.gru = torch.nn.GRU(hidden_size,hidden_size,n_layers,bidirectional=bidirectional)self.fc = torch.nn.Linear(hidden_size*self.n_directions,output_size) #如果是双向则维度*2def _init_hidden(self,batch_size):hidden = torch.zeros(self.n_layers*self.n_directions,batch_size,self.hidden_size)return create_tensor(hidden)def forward(self,input,seq_lengths):#input shape Batchsize*SeqLen->SeqLen*Batchsizeinput = input.t()  #矩阵转置batch_size = input.size(1)hidden = self._init_hidden(batch_size)embedding = self.embedding(input)# pack them upgru_input = pack_padded_sequence(embedding,seq_lengths)  ### make be sorted by descendent  打包变长序列output , hidden = self.gru(gru_input,hidden)if self.n_directions == 2:hidden_cat = torch.cat([hidden[-1],hidden[-2]],dim=1)else:hidden_cat = hidden[-1]fc_output = self.fc(hidden_cat)return fc_output############################################################################   数据处理
def create_tensor(tensor):if USE_GPU:device = torch.device("cuda:0")tensor = tensor.to(device)return tensordef name2list(name):   #返回ascll值和长度arr = [ord(c) for c in name]return arr, len(arr)def make_tensors(names,countries):sequences_and_lengths = [name2list(name) for name in names]name_sequences = [sl[0] for sl in sequences_and_lengths]  #名字的ascll值seq_lengths = torch.LongTensor([sl[1] for sl in sequences_and_lengths]) #单独把列表长度拿出来 (名字的长度)countries = countries.long()#make tensor of name,BatchSize x SeqLen   paddingseq_tensor = torch.zeros(len(name_sequences),seq_lengths.max()).long()   #先做一个batchsize*max(seq_lengths)全0的张量for idx,(seq,seq_len) in enumerate(zip(name_sequences,seq_lengths),0):seq_tensor[idx,:seq_len]= torch.LongTensor(seq)   #把数据贴到全0的张量上去#sort by length to use pack_padded_sequenceseq_lengths,perm_idx = seq_lengths.sort(dim=0,descending=True)   #sort返回排完序的序列和对应的indexseq_tensor = seq_tensor[perm_idx]countries = countries[perm_idx]return create_tensor(seq_tensor),\create_tensor(seq_lengths),\create_tensor(countries)############################################################################     训练测试模块
def trainModel():total_loss = 0for i,(names,countries) in enumerate(trainloader,1):inputs,seq_lengths,target  = make_tensors(names,countries)output = classifier(inputs,seq_lengths)loss = criterion(output,target)optimizer.zero_grad()loss.backward()optimizer.step()total_loss+=loss.item()if i%10==0:print(f'[{time_since(start)}] Epoch{epoch}',end='')print(f'[{i*len(inputs)}/{ len(trainset)}]',end='')print(f'loss={total_loss/(i*len(inputs))}')return total_lossdef testModel():correct = 0total = len(testset)print("evaluating trained model...")with torch.no_grad():for i,(names,countrise) in enumerate(testloader,1):inputs,seq_lengths,target = make_tensors(names,countrise)output = classifier(inputs,seq_lengths)pred = output.max(dim = 1,keepdim=True)[1]correct+=pred.eq(target.view_as(pred)).sum().item()percent = '%.2f'%(100*correct/total)print(f'Test set:Accuracy {correct}/{total} {percent}%')return correct/totaldef time_since(start):"""计算给定时间戳 `start` 与当前时间之间的时间差"""return time.time() - startif __name__=='__main__':classifier = RNNClassifier(N_CHARS, HIDDEN_SIZE, N_COUNTRY, N_LAYER)device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')if USE_GPU:device = torch.device("cuda:0")classifier.to(device)criterion = torch.nn.CrossEntropyLoss()optimizer = torch.optim.Adam(classifier.parameters(), lr=0.001)print("Training for %d epochs..." % N_EPOCHS)acc_list = []epoch_list=[]for epoch in range(1,N_EPOCHS+1):trainModel()acc=testModel()acc_list.append(acc)epoch_list.append(epoch)plt.plot(epoch_list,acc_list)plt.ylabel('Accuracy')plt.xlabel('epoch')plt.grid()plt.show()

#################################################################

使用该模型参加kaggle的电影评论分析比赛(第一次在kaggle提交数据)

Sentiment Analysis on Movie Reviews | Kaggle

最终准确率

movie_Submission使用双向循环网络

movie_Submission_2不使用双向循环网络

准确率较差,因为我没有语义分割而是直接把文本变成Ascii码进行训练

这篇关于刘二大人《PyTorch深度学习实践》循环神经网络RNN高级篇的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/242031

相关文章

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

Java循环创建对象内存溢出的解决方法

《Java循环创建对象内存溢出的解决方法》在Java中,如果在循环中不当地创建大量对象而不及时释放内存,很容易导致内存溢出(OutOfMemoryError),所以本文给大家介绍了Java循环创建对象... 目录问题1. 解决方案2. 示例代码2.1 原始版本(可能导致内存溢出)2.2 修改后的版本问题在

Go中sync.Once源码的深度讲解

《Go中sync.Once源码的深度讲解》sync.Once是Go语言标准库中的一个同步原语,用于确保某个操作只执行一次,本文将从源码出发为大家详细介绍一下sync.Once的具体使用,x希望对大家有... 目录概念简单示例源码解读总结概念sync.Once是Go语言标准库中的一个同步原语,用于确保某个操

SpringBoot项目中Maven剔除无用Jar引用的最佳实践

《SpringBoot项目中Maven剔除无用Jar引用的最佳实践》在SpringBoot项目开发中,Maven是最常用的构建工具之一,通过Maven,我们可以轻松地管理项目所需的依赖,而,... 目录1、引言2、Maven 依赖管理的基础概念2.1 什么是 Maven 依赖2.2 Maven 的依赖传递机

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或