本文主要是介绍Papers with Code 2020 全年回顾(顶流论文+顶流代码+Benchmarks),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
点击上方“计算机视觉工坊”,选择“星标”
干货第一时间送达
本文转载自:AI公园
作者:Ross Taylor 编译:ronghuaiyang
导读
2020年Papers with Code 中最顶流的论文,代码和benchmark。
Papers with Code 中收集了各种机器学习的内容:论文,代码,结果,方便发现和比较。通过这些数据,我们可以了解ML社区中,今年哪些东西最有意思。下面我们总结了2020年最热门的带代码的论文、代码库和benchmark。
2020顶流论文
Tan等人的EfficientDet是2020年在Papers with Code上被访问最多的论文。EfficientDet: Scalable and Efficient Object Detection — Tan et al https://paperswithcode.com/paper/efficientdet-scalable-and-efficient-object
Fixing the train-test resolution discrepancy — Touvron et al https://paperswithcode.com/paper/fixing-the-train-test-resolution-discrepancy-2
ResNeSt: Split-Attention Networks — Zhang et al https://paperswithcode.com/paper/resnest-split-attention-networks
Big Transfer (BiT) — Kolesnikov et al https://paperswithcode.com/paper/large-scale-learning-of-general-visual
Object-Contextual Representations for Semantic Segmentation — Yuan et al https://paperswithcode.com/paper/object-contextual-representations-for
Self-training with Noisy Student improves ImageNet classification — Xie et al https://paperswithcode.com/paper/self-training-with-noisy-student-improves
YOLOv4: Optimal Speed and Accuracy of Object Detection — Bochkovskiy et al https://paperswithcode.com/paper/yolov4-optimal-speed-and-accuracy-of-object
An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale — Dosovitskiy et al https://paperswithcode.com/paper/an-image-is-worth-16x16-words-transformers-1
Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer — Raffel et al https://paperswithcode.com/paper/exploring-the-limits-of-transfer-learning
Hierarchical Multi-Scale Attention for Semantic Segmentation — Tao et al https://paperswithcode.com/paper/hierarchical-multi-scale-attention-for
2020顶流代码库
Transformers是2020年在Papers with Code上被访问最多的代码库Transformers — Hugging Face — https://github.com/huggingface/transformers
PyTorch Image Models — Ross Wightman — https://github.com/rwightman/pytorch-image-models
Detectron2 — FAIR — https://github.com/facebookresearch/detectron2
InsightFace — DeepInsight — https://github.com/deepinsight/insightface
Imgclsmob — osmr — https://github.com/osmr/imgclsmob
DarkNet — pjreddie — https://github.com/pjreddie/darknet
PyTorchGAN — Erik Linder-Norén — https://github.com/eriklindernoren/PyTorch-GAN
MMDetection — OpenMMLab — https://github.com/open-mmlab/mmdetection
FairSeq — PyTorch — https://github.com/pytorch/fairseq
Gluon CV — DMLC — https://github.com/dmlc/gluon-cv
2020顶流Benchmarks
ImageNet是2020年在Papers with Code上访问最多的benchmarkImageNet — Image Classification — https://paperswithcode.com/sota/image-classification-on-imagenet
COCO — Object Detection / Instance Segmentation — https://paperswithcode.com/sota/object-detection-on-coco
Cityscapes — Semantic Segmentation — https://paperswithcode.com/sota/semantic-segmentation-on-cityscapes
CIFAR-10 — Image Classification — https://paperswithcode.com/sota/image-classification-on-cifar-10
CIFAR-100 — Image Classification — https://paperswithcode.com/sota/image-classification-on-cifar-100
PASCAL VOC 2012 — Semantic Segmentation — https://paperswithcode.com/sota/semantic-segmentation-on-pascal-voc-2012
MPII Human Pose — Pose Estimation — https://paperswithcode.com/sota/pose-estimation-on-mpii-human-pose
Market-1501 — Person Re-Identification — https://paperswithcode.com/sota/person-re-identification-on-market-1501
MNIST — Image Classification — https://paperswithcode.com/sota/image-classification-on-mnist
Human 3.6M — Human Pose Estimation -https://paperswithcode.com/sota/pose-estimation-on-mpii-human-pose
英文原文:https://medium.com/paperswithcode/papers-with-code-2020-review-938146ab9658
本文仅做学术分享,如有侵权,请联系删文。下载1在「计算机视觉工坊」公众号后台回复:深度学习,即可下载深度学习算法、3D深度学习、深度学习框架、目标检测、GAN等相关内容近30本pdf书籍。
下载2在「计算机视觉工坊」公众号后台回复:计算机视觉,即可下载计算机视觉相关17本pdf书籍,包含计算机视觉算法、Python视觉实战、Opencv3.0学习等。
下载3在「计算机视觉工坊」公众号后台回复:SLAM,即可下载独家SLAM相关视频课程,包含视觉SLAM、激光SLAM精品课程。
重磅!计算机视觉工坊-学习交流群已成立
扫码添加小助手微信,可申请加入3D视觉工坊-学术论文写作与投稿 微信交流群,旨在交流顶会、顶刊、SCI、EI等写作与投稿事宜。同时也可申请加入我们的细分方向交流群,目前主要有ORB-SLAM系列源码学习、3D视觉、CV&深度学习、SLAM、三维重建、点云后处理、自动驾驶、CV入门、三维测量、VR/AR、3D人脸识别、医疗影像、缺陷检测、行人重识别、目标跟踪、视觉产品落地、视觉竞赛、车牌识别、硬件选型、深度估计、学术交流、求职交流等微信群,请扫描下面微信号加群,备注:”研究方向+学校/公司+昵称“,例如:”3D视觉 + 上海交大 + 静静“。请按照格式备注,否则不予通过。添加成功后会根据研究方向邀请进去相关微信群。原创投稿也请联系。
▲长按加微信群或投稿▲长按关注公众号
3D视觉从入门到精通知识星球:针对3D视觉领域的知识点汇总、入门进阶学习路线、最新paper分享、疑问解答四个方面进行深耕,更有各类大厂的算法工程人员进行技术指导。与此同时,星球将联合知名企业发布3D视觉相关算法开发岗位以及项目对接信息,打造成集技术与就业为一体的铁杆粉丝聚集区,近2000星球成员为创造更好的AI世界共同进步,知识星球入口:
学习3D视觉核心技术,扫描查看介绍,3天内无条件退款圈里有高质量教程资料、可答疑解惑、助你高效解决问题
觉得有用,麻烦给个赞和在看~
这篇关于Papers with Code 2020 全年回顾(顶流论文+顶流代码+Benchmarks)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!