redis学习(三)——集群实现容纳大数据量原理

2023-10-19 07:18

本文主要是介绍redis学习(三)——集群实现容纳大数据量原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

redis 实现高并发主要依靠主从架构,一主多从。要高可用,就要加哨兵,可以实现任何一个实例宕机,可进行主备切换。高并发高可用后想容纳大数据,要redis集群
主从架构:连接
哨兵:连接
1.redis cluster 介绍

  • 自动将数据进行分片,每个 master 上放一部分数据
  • 提供内置的高可用支持,部分 master 不可用时,还是可以继续工作的

redis cluster 架构下,每个 redis 要放开两个端口号,比如一个是 6379,另外一个就是 加1w 的端口号,比如 16379。16379 端口号是用来进行**节点间通信(cluster bus)**的,该通信用来进行故障检测、配置更新、故障转移授权
2.redis cluster 的高可用与主从切换原理
redis cluster 的高可用的原理,几乎跟哨兵是类似的。
判断节点宕机:如果一个节点认为另外一个节点宕机,那么就是 pfail,主观宕(sdown)。如果多个节点都认为另外一个节点宕机了,那么就是 fail,客观宕机(odown),跟哨兵的原理几乎一样
从节点过滤:对宕机的 master node,从其所有的 slave node 中,选择一个切换成 master node
从节点选举:个从节点,都根据自己对 master 复制数据的 offset,来设置一个选举时间,offset 越大(复制数据越多)的从节点,选举时间越靠前,优先进行选举
3.节点间的内部通信机制
(1)基本通信原理:集群元数据的维护有两种方式:集中式、Gossip 协议(redis cluster 节点间采用)
集中式:将集群元数据(节点信息、故障等等)几种存储在某个节点上,底层基于 zookeeper(分布式协调的中间件)对所有元数据进行存储维护。
gossip 协议模式:所有节点都持有一份元数据,不同的节点如果出现了元数据的变更,就不断将元数据发送给其它的节点,让其它节点也进行元数据的变更

集中式的好处在于,元数据的读取和更新,时效性非常好,一旦元数据出现了变更,就立即更新到集中式的存储中,其它节点读取的时候就可以感知到;不好在于,所有的元数据的更新压力全部集中在一个地方,可能会导致元数据的存储有压力。

gossip 好处在于,元数据的更新比较分散,不是集中在一个地方,更新请求会陆陆续续打到所有节点上去更新,降低了压力;不好在于,元数据的更新有延时,可能导致集群中的一些操作会有一些滞后。
(2)gossip 协议深入理解:gossip 协议包含多种消息,包含 meet,ping,pong,fail

  • meet:某个节点发送 meet 给新加入的节点,让新节点加入集群中,然后新节点就会开始与其它节点进行通信
  • ping:每个节点都会频繁给其它节点发送 ping,其中包含自己的状态还有自己维护的集群元数据,互相通过 ping 交换元数据
  • pong:返回 ping 和 meeet,包含自己的状态和其它信息,也用于信息广播和更
  • fail:某个节点判断另一个节点 fail之后,就发送 fail 给其它节点,通知其它节点说,某个节点宕机了

4.分布式寻址算法

  • hash 算法(大量缓存重建)
  • 一致性 hash 算法(自动缓存迁移)+ 虚拟节点(自动负载均衡)
  • redis cluster 的hash slot 算法
    hash算法:来了一个 key,首先计算 hash 值,然后对节点数取模然后打在不同的 master 节点上,一旦某一个 master 节点宕机,所有请求过来,都会基于最新的剩余 master 节点数去取模尝试取数据,导致大部分的请求过来,全部无法拿到有效的缓存,导致大量的流量涌入数据库
    一致性 hash 算法:将整个 hash 值空间组织成一个顺时针方向虚拟圆环,下一步将各个 master 节点(使用服务器的 ip 或主机名)进行 hash。这样就能确定每个节点在其哈希环上的位置
    来了一个 key,首先计算 hash 值,并确定此数据在环上的位置,从此位置沿环顺时针“行走”,遇到的第一个 master 节点就是 key 所在位置。
    如果一个节点挂了,受影响的数据仅仅是此节点到环空间前一个节点(沿着逆时针方向行走遇到的第一个节点)之间的数据,其它不受影响。增加一个节点也同理
    虚拟节点机制:解决节点太少时容易因为节点分布不均匀而造成缓存热点的问题,即对每一个节点计算多个 hash,每个计算结果位置都放置一个虚拟节点。这样就实现了数据的均匀分布,负载均衡。
    redis cluster 的 hash slot 算法:redis cluster 有固定的 16384 个 hash slot,对每个 key 计算 CRC16 值,然后对 16384 取模,可以获取 key 对应的 hash slot。任何一台机器宕机,另外两个节点不影响,因为 key 找的是 hash slot,不是机器

这篇关于redis学习(三)——集群实现容纳大数据量原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/238221

相关文章

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

MySQL分表自动化创建的实现方案

《MySQL分表自动化创建的实现方案》在数据库应用场景中,随着数据量的不断增长,单表存储数据可能会面临性能瓶颈,例如查询、插入、更新等操作的效率会逐渐降低,分表是一种有效的优化策略,它将数据分散存储在... 目录一、项目目的二、实现过程(一)mysql 事件调度器结合存储过程方式1. 开启事件调度器2. 创

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

基于Go语言实现一个压测工具

《基于Go语言实现一个压测工具》这篇文章主要为大家详细介绍了基于Go语言实现一个简单的压测工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录整体架构通用数据处理模块Http请求响应数据处理Curl参数解析处理客户端模块Http客户端处理Grpc客户端处理Websocket客户端

Java CompletableFuture如何实现超时功能

《JavaCompletableFuture如何实现超时功能》:本文主要介绍实现超时功能的基本思路以及CompletableFuture(之后简称CF)是如何通过代码实现超时功能的,需要的... 目录基本思路CompletableFuture 的实现1. 基本实现流程2. 静态条件分析3. 内存泄露 bug

C#实现添加/替换/提取或删除Excel中的图片

《C#实现添加/替换/提取或删除Excel中的图片》在Excel中插入与数据相关的图片,能将关键数据或信息以更直观的方式呈现出来,使文档更加美观,下面我们来看看如何在C#中实现添加/替换/提取或删除E... 在Excandroidel中插入与数据相关的图片,能将关键数据或信息以更直观的方式呈现出来,使文档更

C#实现系统信息监控与获取功能

《C#实现系统信息监控与获取功能》在C#开发的众多应用场景中,获取系统信息以及监控用户操作有着广泛的用途,比如在系统性能优化工具中,需要实时读取CPU、GPU资源信息,本文将详细介绍如何使用C#来实现... 目录前言一、C# 监控键盘1. 原理与实现思路2. 代码实现二、读取 CPU、GPU 资源信息1.