SiamBAN 训练过程debug记录

2023-10-19 06:59

本文主要是介绍SiamBAN 训练过程debug记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、一些参数的图片展示

1. train.py

 (1) main()

(2)def train

(3) def build_data_loader()

 (4) build_opt_lr

2. model_load.py

(1) def load_pretrain

(2) def remove_prefix

(3) def check_keys

3. dataset.py

 (1) class BANDataset(Dataset)

def shuffle

 (2)class SubDataset(object)

(3)def _filter_zero-->class SubDataset(object)

(4) def shuffle-->class SubDataset(object)

(5) def _find_dataset-->  class BANDataset(Dataset)

 (6) def get_positive_pair-->class SubDataset(object)

 (7)  _get_bbox-->  class BANDataset(Dataset)

4. lr_scheduler.py

(1) def _build_warm_up_scheduler

 (2) class WarmUPScheduler

 5.distributed.py

(1) class DistModule

 (2) broadcast_params

6. model_builder.py

7. augmentation.py

(1)  def __call__

 (2) _shift_scale_aug

8.point_target.py

二、一些关键部分的入口以及代码

1. 搭建主干网络以及构造模型

2. 加载Rsnet预训练骨干的参数 

3. 建立dataset loader

4. 导入数据集的入口

5. 训练时打印的出处

(1) 刚开始准备的阶段

(2) 开头时打印的config内容

 (3) Epoch 啥的

 (4) progress 啥的

(5) 模型的模块结构

6. 数据送入模型的入口

7. 分类标签和回归标签的创建

8. 损失函数的使用

9. 原输入图片为(511,511,3),resize到输入网络的尺寸的入口

10.正样本随机选16个,负样本随机选48个入口

11. 输入shape 通道转成对应的3通道 (3,255,255)以及(3,127,127)入口

12 日志文件创建入口

13. 更改数据集导入路径啥的设置

14. 截取训练数据的入口

15 .最终训练数据的每轮epoch的大小

三、 网络结构


一、一些参数的图片展示

1. train.py

 (1) main()

 optimizer

 lr_scheduler

dist_model

(2)def train

average_meter

 train_loader

data 

outputs

 batch_info (first)

v

 batch_info(second)

 average_meter

 v (batch_info)

(3) def build_data_loader()

train_dataset

 train_sampler

 train_loader

 (4) build_opt_lr

model

 

param

 m

 trainable_params  (first)

 trainable_params  (second)

  trainable_params  (third)

 optimizer

lr_scheduler  (first)

 lr_scheduler  (second)

2. model_load.py

(1) def load_pretrain

第一个

经过remove_prefix后

(2) def remove_prefix

(3) def check_keys

ckpt_keys 

 model_keys

 used_pretrainde_keys

 unused_pretrained_keys

 missing_keys (first)

 missing_keys (secend)

3. dataset.py

 (1) class BANDataset(Dataset)

cfg.DATASET

 《config文件中的设置》

subdata_cfg

self.all_dataset

self.pick

 dataset

 bbox

def shuffle

p, pick

《第一次循环》

 《循环结束后》

 (2)class SubDataset(object)

f

 meta_data (太长了,没截图完)  first

meta_data (second,经过_filter_zero之后的) 

 self.labels

 self.videos

template

 search

 template_box

 search_box

(3)def _filter_zero-->class SubDataset(object)

tracks

(4) def shuffle-->class SubDataset(object)

list

(5) def _find_dataset-->  class BANDataset(Dataset)

dataset

 (6) def get_positive_pair-->class SubDataset(object)

self

 video

 track_info

 (7)  _get_bbox-->  class BANDataset(Dataset)

bbox

4. lr_scheduler.py

(1) def _build_warm_up_scheduler

sc1

 sc2

 (2) class WarmUPScheduler

warmup

 normal

 self.lr_spaces

 5.distributed.py

(1) class DistModule

self.module

 (2) broadcast_params

p

6. model_builder.py

data

 template

 search

 label_cls

 label_loc

 zf 

 xf

 zf (neck)

 xf (neck)

 cls

 loc

 cls (log_softmax)

 cls_loss

 loc_loss

7. augmentation.py

(1)  def __call__

corp_bbox

bbox

 (2) _shift_scale_aug

crop_bbox_center (first)

 crop_bbox_center (second)

 crop_bbox

8.point_target.py

 self.point

points

 [0]

 [1]

cls (first)

 delta (first)

 delta (second)

[0]

 [1]

 [2]

 [3]

 pos

 neg

 position

 cls(second)

二、一些关键部分的入口以及代码

1. 搭建主干网络以及构造模型

train.py------- 267

model = ModelBuilder().cuda().train()

2. 加载Rsnet预训练骨干的参数 

 train.py-----271

    if cfg.BACKBONE.PRETRAINED:  # Truecur_path = os.path.dirname(os.path.realpath(__file__))  # cur_path: '/root/data/zjx/siamBAN/siamban_ori/tools'backbone_path = os.path.join(cur_path, '../', cfg.BACKBONE.PRETRAINED)  # backbone_path:'/root/data/zjx/siamBAN/siamban_ori/tools/../pretrained_models/resnet50.model'load_pretrain(model.backbone, backbone_path)

3. 建立dataset loader

train.py----283

train_loader = build_data_loader()

4. 导入数据集的入口

dataset.py -----160

 for name in cfg.DATASET.NAMES:  # name: 'COCO' 这个就是拿出数据集的地方

更精确一点,裁剪后的数据集路径为

dataset.py -----34

 self.root = os.path.join(cur_path, '../../', root)  # '/root/data/zjx/siamBAN/siamban_ori/siamban/datasets/../../training_dataset/coco/crop511'

5. 训练时打印的出处

(1) 刚开始准备的阶段

“======================”
{'000000':[1.08,187.69,612.6700000000001,473.53]}
“======================”

dataset.py-----73

            for trk, frames in tracks.items():  # trk={str}'00'  frames={dict:1}{'000000':[1.08,187.69,612.6700000000001,473.53]}print("===================")print(frames)print("===================")

这些都是准备阶段,还没开始对数据集进行训练呢。

(2) 开头时打印的config内容

 train.py-----264

 logger.info("config \n{}".format(json.dumps(cfg, indent=4)))

 (3) Epoch 啥的

train.py-----241

                for cc, (k, v) in enumerate(batch_info.items()):  # cc:索引, (k,v)与之前的一样if cc % 2 == 0:info += ("\t{:s}\t").format(getattr(average_meter, k))  # ’Epoch:[1][20/17857] lr:0.0010000\n\tbatch_time:1.308527(1.368259)\t‘else:info += ("{:s}\n").format(getattr(average_meter, k))  # ’Epoch:[1][20/17857] lr:0.0010000\n\tbatch_time:1.308527(1.368259)\tdata_time:0.488958(0.661270)\n‘logger.info(info)

 (4) progress 啥的

 log_helper.py-----102

 logger.info('Progress: %d / %d [%d%%], Speed: %.3f s/iter, ETA %d:%02d:%02d (D:H:M)\n' %(i, n, i / n * 100,average_time,remaining_day, remaining_hour, remaining_min))

(5) 模型的模块结构

 train.py-----166

logger.info("model\n{}".format(describe(model.module)))

6. 数据送入模型的入口

train.py-----202

 outputs = model(data)

7. 分类标签和回归标签的创建

dataset.py-----272

cls, delta = self.point_target(bbox, cfg.TRAIN.OUTPUT_SIZE, neg)

8. 损失函数的使用

module_builder.py-----93

cls = self.log_softmax(cls)  # 先取softmax然后再log,值都为负数, Tensor:(28,25,25,2) <c>
cls_loss = select_cross_entropy_loss(cls, label_cls)  #  <c> 一个数 tensor(0.7612)# loc loss with iou loss
loc_loss = select_iou_loss(loc, label_loc, label_cls)

9. 原输入图片为(511,511,3),resize到输入网络的尺寸的入口

dataset.py----261

template, _ = self.template_aug(template_image,template_box,cfg.TRAIN.EXEMPLAR_SIZE,gray=gray)  # ndarry:(127,127,3)search, bbox = self.search_aug(search_image,search_box,cfg.TRAIN.SEARCH_SIZE,gray=gray)

augmentation.py-----126

image, bbox = self._shift_scale_aug(image, bbox, crop_bbox, size)

10.正样本随机选16个,负样本随机选48个入口

point_target.py---23

 def select(position, keep_num=16):  # keep_num 16 或 48num = position[0].shape[0]  # 举例 569if num <= keep_num:return position, numslt = np.arange(num)  # 举例 ndarray:(569:)  [0~568]np.random.shuffle(slt)  # 打乱slt = slt[:keep_num]  # ndarray:(48,)return tuple(p[slt] for p in position), keep_num

11. 输入shape 通道转成对应的3通道 (3,255,255)以及(3,127,127)入口

dataset.py----273

template = template.transpose((2, 0, 1)).astype(np.float32)  # ndarray:(3,127,127)
search = search.transpose((2, 0, 1)).astype(np.float32) 

12 日志文件创建入口

train.py-----259

 if cfg.TRAIN.LOG_DIR:  # Trueadd_file_handler('global',os.path.join(cfg.TRAIN.LOG_DIR, 'logs.txt'),logging.INFO)

13. 更改数据集导入路径啥的设置

config.py-----129

__C.DATASET.NAMES = ('VID', 'YOUTUBEBB', 'DET', 'COCO', 'GOT10K', 'LASOT')__C.DATASET.VID = CN()
__C.DATASET.VID.ROOT = 'training_dataset/vid/crop511'
__C.DATASET.VID.ANNO = 'training_dataset/vid/train.json'
__C.DATASET.VID.FRAME_RANGE = 100
__C.DATASET.VID.NUM_USE = 100000__C.DATASET.YOUTUBEBB = CN()
__C.DATASET.YOUTUBEBB.ROOT = 'training_dataset/yt_bb/crop511'
__C.DATASET.YOUTUBEBB.ANNO = 'training_dataset/yt_bb/train.json'
__C.DATASET.YOUTUBEBB.FRAME_RANGE = 3
__C.DATASET.YOUTUBEBB.NUM_USE = 200000__C.DATASET.COCO = CN()
__C.DATASET.COCO.ROOT = 'training_dataset/coco/crop511'
__C.DATASET.COCO.ANNO = 'training_dataset/coco/train2017.json'
__C.DATASET.COCO.FRAME_RANGE = 1
__C.DATASET.COCO.NUM_USE = 100000__C.DATASET.DET = CN()
__C.DATASET.DET.ROOT = 'training_dataset/det/crop511'
__C.DATASET.DET.ANNO = 'training_dataset/det/train.json'
__C.DATASET.DET.FRAME_RANGE = 1
__C.DATASET.DET.NUM_USE = 200000__C.DATASET.GOT10K = CN()
__C.DATASET.GOT10K.ROOT = 'training_dataset/got_10k/crop511'
__C.DATASET.GOT10K.ANNO = 'training_dataset/got_10k/train.json'
__C.DATASET.GOT10K.FRAME_RANGE = 100
__C.DATASET.GOT10K.NUM_USE = 200000__C.DATASET.LASOT = CN()
__C.DATASET.LASOT.ROOT = 'training_dataset/lasot/crop511'
__C.DATASET.LASOT.ANNO = 'training_dataset/lasot/train.json'
__C.DATASET.LASOT.FRAME_RANGE = 100
__C.DATASET.LASOT.NUM_USE = 200000__C.DATASET.VIDEOS_PER_EPOCH = 1000000

14. 截取训练数据的入口

训练数据所用的图片(这里对应处理前的单张图片,处理后成为一个文件夹,依据所包含目标数量多少下面可能包含多张图片)的数量为设置的,self.use_num,若大于这个数则随机截取,小于这个则随机会重复选取直至满足

dataset.py-----66 、98

 self.pick = self.shuffle()
    def shuffle(self):lists = list(range(self.start_idx, self.start_idx + self.num))  #  {list:117266} 从0到117265,并且转成列表 <c>pick = []while len(pick) < self.num_use:  # 小于 使用的数量则循环 。若self.num_use小于lists 的长度则一次循环结束,截取这么长;若大于,则循环执行直至满足np.random.shuffle(lists)  # 随机打乱列表中的 索引顺序pick += listsreturn pick[:self.num_use]

15 .最终训练数据的每轮epoch的大小

可以一次性使用多个训练数据集,因为每轮epoch的总batch训练大小为20000000个,个数不够循环来凑。

dataset.py-----198

    def shuffle(self):pick = []m = 0while m < self.num:  # 当m 小于时一直执行这个循环p = []for sub_dataset in self.all_dataset:sub_p = sub_dataset.pick  # {list:100000}p += sub_p  # 如果是单个数据集的话,p每次都是那些np.random.shuffle(p)pick += pm = len(pick)logger.info("shuffle done!")logger.info("dataset length {}".format(self.num))return pick[:self.num]

16 . 保存模型参数

 train.py -----172

            if get_rank() == 0:  # 只在进程0上保存就行了,避免重复,而且保存的参数为 model.moduletorch.save({'epoch': epoch,'state_dict': model.module.state_dict(),'optimizer': optimizer.state_dict()},cfg.TRAIN.SNAPSHOT_DIR+'/checkpoint_e%d.pth' % (epoch))

三、 网络结构

ModelBuilder((backbone): ResNet((conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)(layer1): Sequential((0): Bottleneck((conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(downsample): Sequential((0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): Bottleneck((conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(2): Bottleneck((conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)))(layer2): Sequential((0): Bottleneck((conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), bias=False)(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(downsample): Sequential((0): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), bias=False)(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): Bottleneck((conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(2): Bottleneck((conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(3): Bottleneck((conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)))(layer3): Sequential((0): Bottleneck((conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(downsample): Sequential((0): Conv2d(512, 1024, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)(1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(2): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(3): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(4): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(5): Bottleneck((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)))(layer4): Sequential((0): Bottleneck((conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True)(downsample): Sequential((0): Conv2d(1024, 2048, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2), bias=False)(1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): Bottleneck((conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(4, 4), dilation=(4, 4), bias=False)(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))(2): Bottleneck((conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(4, 4), dilation=(4, 4), bias=False)(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(relu): ReLU(inplace=True))))(neck): AdjustAllLayer((downsample2): AdjustLayer((downsample): Sequential((0): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(downsample3): AdjustLayer((downsample): Sequential((0): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(downsample4): AdjustLayer((downsample): Sequential((0): Conv2d(2048, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True))))(head): MultiBAN((box2): DepthwiseBAN((cls): DepthwiseXCorr((conv_kernel): Sequential((0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(conv_search): Sequential((0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(head): Sequential((0): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(256, 2, kernel_size=(1, 1), stride=(1, 1))))(loc): DepthwiseXCorr((conv_kernel): Sequential((0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(conv_search): Sequential((0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(head): Sequential((0): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(256, 4, kernel_size=(1, 1), stride=(1, 1)))))(box3): DepthwiseBAN((cls): DepthwiseXCorr((conv_kernel): Sequential((0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(conv_search): Sequential((0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(head): Sequential((0): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(256, 2, kernel_size=(1, 1), stride=(1, 1))))(loc): DepthwiseXCorr((conv_kernel): Sequential((0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(conv_search): Sequential((0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(head): Sequential((0): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(256, 4, kernel_size=(1, 1), stride=(1, 1)))))(box4): DepthwiseBAN((cls): DepthwiseXCorr((conv_kernel): Sequential((0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(conv_search): Sequential((0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(head): Sequential((0): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(256, 2, kernel_size=(1, 1), stride=(1, 1))))(loc): DepthwiseXCorr((conv_kernel): Sequential((0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(conv_search): Sequential((0): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True))(head): Sequential((0): Conv2d(256, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU(inplace=True)(3): Conv2d(256, 4, kernel_size=(1, 1), stride=(1, 1))))))
)

这篇关于SiamBAN 训练过程debug记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/238130

相关文章

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

PyInstaller打包selenium-wire过程中常见问题和解决指南

《PyInstaller打包selenium-wire过程中常见问题和解决指南》常用的打包工具PyInstaller能将Python项目打包成单个可执行文件,但也会因为兼容性问题和路径管理而出现各种运... 目录前言1. 背景2. 可能遇到的问题概述3. PyInstaller 打包步骤及参数配置4. 依赖

Python获取中国节假日数据记录入JSON文件

《Python获取中国节假日数据记录入JSON文件》项目系统内置的日历应用为了提升用户体验,特别设置了在调休日期显示“休”的UI图标功能,那么问题是这些调休数据从哪里来呢?我尝试一种更为智能的方法:P... 目录节假日数据获取存入jsON文件节假日数据读取封装完整代码项目系统内置的日历应用为了提升用户体验,

将Mybatis升级为Mybatis-Plus的详细过程

《将Mybatis升级为Mybatis-Plus的详细过程》本文详细介绍了在若依管理系统(v3.8.8)中将MyBatis升级为MyBatis-Plus的过程,旨在提升开发效率,通过本文,开发者可实现... 目录说明流程增加依赖修改配置文件注释掉MyBATisConfig里面的Bean代码生成使用IDEA生

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

C# WinForms存储过程操作数据库的实例讲解

《C#WinForms存储过程操作数据库的实例讲解》:本文主要介绍C#WinForms存储过程操作数据库的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、存储过程基础二、C# 调用流程1. 数据库连接配置2. 执行存储过程(增删改)3. 查询数据三、事务处

JSON Web Token在登陆中的使用过程

《JSONWebToken在登陆中的使用过程》:本文主要介绍JSONWebToken在登陆中的使用过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录JWT 介绍微服务架构中的 JWT 使用结合微服务网关的 JWT 验证1. 用户登录,生成 JWT2. 自定义过滤

java中使用POI生成Excel并导出过程

《java中使用POI生成Excel并导出过程》:本文主要介绍java中使用POI生成Excel并导出过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录需求说明及实现方式需求完成通用代码版本1版本2结果展示type参数为atype参数为b总结注:本文章中代码均为

MySQL INSERT语句实现当记录不存在时插入的几种方法

《MySQLINSERT语句实现当记录不存在时插入的几种方法》MySQL的INSERT语句是用于向数据库表中插入新记录的关键命令,下面:本文主要介绍MySQLINSERT语句实现当记录不存在时... 目录使用 INSERT IGNORE使用 ON DUPLICATE KEY UPDATE使用 REPLACE