鸿蒙反震时间怎么计算,鸿蒙内核源码分析(时间管理篇) | Tick是操作系统的基本时间单位...

本文主要是介绍鸿蒙反震时间怎么计算,鸿蒙内核源码分析(时间管理篇) | Tick是操作系统的基本时间单位...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

dc095eb1cc5e14f82e0c354b2f86ccd5.png

本篇说清楚时间概念

读本篇之前建议先读鸿蒙内核源码分析(总目录)其他篇.

时间概念太重要了,在鸿蒙内核又是如何管理和使用时间的呢?

时间管理以系统时钟 g_sysClock 为基础,给应用程序提供所有和时间有关的服务。

bd99237cfb0d0bcb952fdc556cbde4d7.png

● 用户以秒、毫秒为单位计时.

● 操作系统以Tick为单位计时,这个认识很重要. 每秒的tick大小很大程度上决定了内核调度的次数多少.

● 当用户需要对系统进行操作时,例如任务挂起、延时等,此时需要时间管理模块对Tick和秒/毫秒进行转换。

熟悉两个概念:

● Cycle(周期):系统最小的计时单位。Cycle的时长由系统主时钟频率决定,系统主时钟频率就是每秒钟的Cycle数。

● Tick(节拍):Tick是操作系统的基本时间单位,由用户配置的每秒Tick数决定,可大可小.

怎么去理解他们之间的关系呢?看几个宏定义就清楚了.

4e2da22c3a0f9cf24634e227b02ca9d5.png

时钟周期(振荡周期)

在鸿蒙g_sysClock表示时钟周期,是CPU的赫兹,也就是上面说的Cycle,这是固定不变的,由硬件晶振的频率决定的. OsMain是内核运行的第一个C函数,首个子函数就是 osRegister,完成对g_sysClock的赋值

0ee4539454a16da9fce87e1142001d25.png

CPU周期也叫(机器周期)

在鸿蒙宏OS_CYCLE_PER_TICK表示机器周期,Tick由用户根据实际情况配置. 例如:主频为1G的CPU,其振荡周期为: 1吉赫 (GHz 109 Hz) = 1 000 000 000 Hz 当Tick为100时,则1 000 000 000/100 = 10000000 ,即一秒内可产生1千万个CPU周期.CPU就是用这1千万个周期去执行指令的.

指令周期

指令周期是执行一条指令所需要的时间,一般由若干个机器周期组成。指令不同,所需的机器周期数也不同。 对于一些简单的的单字节指令,在取指令周期中,指令取出到指令寄存器后,立即译码执行,不再需要其它的机器周期。 对于一些比较复杂的指令,例如转移指令、乘法指令,则需要两个或者两个以上的机器周期。 通常含一个机器周期的指令称为单周期指令,包含两个机器周期的指令称为双周期指令。

Tick硬中断函数

LITE_OS_SEC_BSS volatile UINT64 g_tickCount[LOSCFG_KERNEL_CORE_NUM] = {0};//tick计数器,系统一旦启动,一直在++, 为防止溢出,这是一个 UINT64 的变量

LITE_OS_SEC_DATA_INIT UINT32 g_sysClock;//系统时钟,是绝大部分部件工作的时钟源,也是其他所有外设的时钟的来源

LITE_OS_SEC_DATA_INIT UINT32 g_tickPerSecond;//每秒Tick数,鸿蒙默认是每秒100次,即:10ms

LITE_OS_SEC_BSS DOUBLEg_cycle2NsScale; //周期转纳秒级

/* spinlock fortask module */

LITE_OS_SEC_BSS SPIN_LOCK_INIT(g_tickSpin); //节拍器自旋锁

#define TICK_LOCK(state)                       LOS_SpinLockSave(&g_tickSpin, &(state))

/*

* Description : Tick interruption handler

*///节拍中断处理函数 ,鸿蒙默认10ms触发一次

LITE_OS_SEC_TEXT VOID OsTickHandler(VOID)

{

UINT32 intSave;

TICK_LOCK(intSave);

g_tickCount[ArchCurrCpuid()]++;//当前CPU核计数器

TICK_UNLOCK(intSave);

#ifdef LOSCFG_KERNEL_VDSO

OsUpdateVdsoTimeval();

#endif

#ifdef LOSCFG_KERNEL_TICKLESS

OsTickIrqFlagSet(OsTicklessFlagGet());

#endif

#if (LOSCFG_BASE_CORE_TICK_HW_TIME == YES)

HalClockIrqClear(); /* diff fromevery platform */

#endif

OsTimesliceCheck();//时间片检查

OsTaskScan(); /* task timeout scan *///任务扫描

#if (LOSCFG_BASE_CORE_SWTMR == YES)

OsSwtmrScan();//定时器扫描,看是否有超时的定时器

#endif

}

#ifdef __cplusplus

#if __cplusplus

}

解读

● g_tickCount记录每个CPU核tick的数组,每次硬中断都触发 OsTickHandler,每个CPU核单独计数.

● OsTickHandler是内核调度的动力,其中会检查任务时间片是否用完,定时器是否超时.主动delay的任务是否需要被唤醒,其本质是个硬中断,在HalClockInit硬时钟初始化时创建的,具体在硬中断篇中会详细讲解.

● TICK_LOCK是tick操作的自旋锁,宏原型LOS_SpinLockSave在自旋锁篇中已详细介绍.

功能函数

#define OS_SYS_MS_PER_SECOND   1000         //一秒多少毫秒

//获取自系统启动以来的Tick数

LITE_OS_SEC_TEXT_MINOR UINT64 LOS_TickCountGet(VOID)

{

UINT32 intSave;

UINT64 tick;

/*

* use core0's tick as system's timeline,

* the tick needs tobe atomic.

*/

TICK_LOCK(intSave);

tick = g_tickCount[0];//使用CPU core0作为系统的 tick数

TICK_UNLOCK(intSave);

returntick;

}

//每个Tick多少Cycle数

LITE_OS_SEC_TEXT_MINOR UINT32 LOS_CyclePerTickGet(VOID)

{

returng_sysClock / LOSCFG_BASE_CORE_TICK_PER_SECOND;

}

//毫秒转换成Tick

LITE_OS_SEC_TEXT_MINOR UINT32 LOS_MS2Tick(UINT32 millisec)

{

if (millisec == OS_MAX_VALUE) {

returnOS_MAX_VALUE;

}

return((UINT64)millisec * LOSCFG_BASE_CORE_TICK_PER_SECOND) / OS_SYS_MS_PER_SECOND;

}

//Tick转化为毫秒

LITE_OS_SEC_TEXT_MINOR UINT32 LOS_Tick2MS(UINT32 tick)

{

return((UINT64)tick * OS_SYS_MS_PER_SECOND) / LOSCFG_BASE_CORE_TICK_PER_SECOND;

}

说明

● 在CPU篇中讲过,0号CPU核默认为主核,默认获取自系统启动以来的Tick数使用的是g_tickCount[0]

● 因每个CPU核的tick是独立计数的,所以g_tickCount中各值是不一样的.

● 系统的Tick数在关中断的情况下不进行计数,因为OsTickHandler本质是由硬中断触发的,屏蔽硬中断的情况下就不会触发OsTickHandler,自然也就不会有g_tickCount[ArchCurrCpuid()]++的计数,所以系统Tick数不能作为准确时间使用.

● 追问下,什么情况下硬中断会被屏蔽?

编程示例

前提条件:

● 使用每秒的Tick数LOSCFG_BASE_CORE_TICK_PER_SECOND的默认值100。

● 配好OS_SYS_CLOCK系统主时钟频率。

时间转换

VOID Example_TransformTime(VOID)

{

UINT32 ms;

UINT32 tick;

tick = LOS_MS2Tick(10000);    // 10000ms转换为tick

dprintf("tick = %d \n",tick);

ms = LOS_Tick2MS(100);        // 100tick转换为ms

dprintf("ms = %d \n",ms);

}

时间转换结果

tick = 1000

ms = 1000

时间统计和时间延迟

LITE_OS_SEC_TEXT UINT32 LOS_TaskDelay(UINT32 tick);

VOID Example_GetTime(VOID)

{

UINT32 cyclePerTick;

UINT64 tickCount;

cyclePerTick  = LOS_CyclePerTickGet();

if(0 != cyclePerTick) {

dprintf("LOS_CyclePerTickGet = %d \n", cyclePerTick);

}

tickCount = LOS_TickCountGet();

if(0 != tickCount) {

dprintf("LOS_TickCountGet = %d \n", (UINT32)tickCount);

}

LOS_TaskDelay(200);//延迟200个tick

tickCount = LOS_TickCountGet();

if(0 != tickCount) {

dprintf("LOS_TickCountGet after delay = %d \n", (UINT32)tickCount);

}

}

时间统计和时间延迟结果

LOS_CyclePerTickGet = 495000 //取决于CPU的频率

LOS_TickCountGet = 1 //实际情况不一定是1的

LOS_TickCountGet afterdelay = 201 //实际情况不一定是201,但二者的差距会是200

【编辑推荐】

【责任编辑:jianghua TEL:(010)68476606】

点赞 0

这篇关于鸿蒙反震时间怎么计算,鸿蒙内核源码分析(时间管理篇) | Tick是操作系统的基本时间单位...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/237997

相关文章

Springboot中分析SQL性能的两种方式详解

《Springboot中分析SQL性能的两种方式详解》文章介绍了SQL性能分析的两种方式:MyBatis-Plus性能分析插件和p6spy框架,MyBatis-Plus插件配置简单,适用于开发和测试环... 目录SQL性能分析的两种方式:功能介绍实现方式:实现步骤:SQL性能分析的两种方式:功能介绍记录

Python如何计算两个不同类型列表的相似度

《Python如何计算两个不同类型列表的相似度》在编程中,经常需要比较两个列表的相似度,尤其是当这两个列表包含不同类型的元素时,下面小编就来讲讲如何使用Python计算两个不同类型列表的相似度吧... 目录摘要引言数字类型相似度欧几里得距离曼哈顿距离字符串类型相似度Levenshtein距离Jaccard相

SpringBoot中使用 ThreadLocal 进行多线程上下文管理及注意事项小结

《SpringBoot中使用ThreadLocal进行多线程上下文管理及注意事项小结》本文详细介绍了ThreadLocal的原理、使用场景和示例代码,并在SpringBoot中使用ThreadLo... 目录前言技术积累1.什么是 ThreadLocal2. ThreadLocal 的原理2.1 线程隔离2

如何利用Java获取当天的开始和结束时间

《如何利用Java获取当天的开始和结束时间》:本文主要介绍如何使用Java8的LocalDate和LocalDateTime类获取指定日期的开始和结束时间,展示了如何通过这些类进行日期和时间的处... 目录前言1. Java日期时间API概述2. 获取当天的开始和结束时间代码解析运行结果3. 总结前言在J

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

MyBatis-Flex BaseMapper的接口基本用法小结

《MyBatis-FlexBaseMapper的接口基本用法小结》本文主要介绍了MyBatis-FlexBaseMapper的接口基本用法小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具... 目录MyBATis-Flex简单介绍特性基础方法INSERT① insert② insertSelec

MySql死锁怎么排查的方法实现

《MySql死锁怎么排查的方法实现》本文主要介绍了MySql死锁怎么排查的方法实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录前言一、死锁排查方法1. 查看死锁日志方法 1:启用死锁日志输出方法 2:检查 mysql 错误

修改若依框架Token的过期时间问题

《修改若依框架Token的过期时间问题》本文介绍了如何修改若依框架中Token的过期时间,通过修改`application.yml`文件中的配置来实现,默认单位为分钟,希望此经验对大家有所帮助,也欢迎... 目录修改若依框架Token的过期时间修改Token的过期时间关闭Token的过期时js间总结修改若依

Go Mongox轻松实现MongoDB的时间字段自动填充

《GoMongox轻松实现MongoDB的时间字段自动填充》这篇文章主要为大家详细介绍了Go语言如何使用mongox库,在插入和更新数据时自动填充时间字段,从而提升开发效率并减少重复代码,需要的可以... 目录前言时间字段填充规则Mongox 的安装使用 Mongox 进行插入操作使用 Mongox 进行更

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav