openvino系列教程之人脸检测 mobilenetv2

2023-10-19 03:28

本文主要是介绍openvino系列教程之人脸检测 mobilenetv2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        OpenVINO(开放式视觉推理和神经网络优化)是英特尔推出的一款用于加速计算机视觉应用开发的软件。它基于英特尔的深度学习技术,提供了一套完整的工具链,包括模型优化器、运行时库等,帮助开发者快速实现高性能的计算机视觉算法。OpenVINO支持多种硬件平台,如CPU、GPU、FPGA等,可以广泛应用于智能安防、工业检测、无人驾驶等领域。通过使用OpenVINO,开发者可以轻松地将深度学习模型部署到各种设备上,实现高效、低功耗的计算机视觉应用。

一、python环境安装

conda create -n vino2021 python=3.8 -y
conda activate vino2021
pip install opencv-python==4.5.4.58
pip install openvino==2021.4.1  # 建议最好使用这个版本

为什么这里建议openvino使用版本和本文一致?因为openvino向上向下兼容性很一般。

二、openvino推理流程简介

一般地,模型推理包含三大步骤:

  • 图像预处理
  • 推理
  • 后处理

        openvino也遵从上面步骤流程。其中,图像预处理可能包含:图像resize、将BGR转成RGB次序、将CHW转成HWC等等。这些工作,使用opencv可以快速实现。例如:

import cv2
src = cv2.imread("d:/Data/15.jpg")
src_ = cv2.cvtColor(src, cv2.COLOR_BGR2RGB) # 将BGR转成RGB次序 
image = cv2.resize(src, (256, 256)) # 图像resize
image = image.transpose(2, 0, 1) # 将CHW转成HWC

        至于模型推理,其实不管是openvino,还是tensorrt,或者是onnxruntime等,都有推理引擎组件,使用的时候是需要使用模型将推理引擎初始化就OK;然后往引擎里面塞入图像数据就行了。这里举个例子:

# 读取模型
model_xml = "data/face-detection-0200.xml"
model_bin = "data/face-detection-0200.bin"
net = ie.read_network(model=model_xml)
# 加载模型到CPU中
exec_net = ie.load_network(network=net, device_name="CPU")
# 推理(这里相当于将image塞进推理引擎了)
res = exec_net.infer(inputs={input_blob: [image]})

        最后,推理引擎会输出特征图,也就是推理结果,我们写一个后处理代码就行了。例如:对于目标检测,我需要手写NMS;对于分割,我们需要手写上采样。

res = res[output_blob]
dets = res.reshape(-1, 7)
sh, sw, _ = src.shape
for det in dets:conf = det[2]if conf > 0.5:# calss_id...xmin = int(det[3] * sw)ymin = int(det[4] * sh)xmax = int(det[5] * sw)ymax = int(det[6] * sh)

        本文openvino的使用套路其实很固定,上文说道模型推理一般是三大步骤,这里openvino推理给细化成8个步骤。openvino一般完整代码步骤如下:

  • Step1:初始化推理引擎
  • Step2:从xml文件读取模型网络,从bin文件读取模型参数;或者直接从onnx文件同时读取模               型和参数
  • Step3:配置网络的输出、输入(图像预处理)
  • Step4:加载模型到设备
  • Step5:创建推理请求
  • Step6:准备输入
  • Step7:推理
  • Step8:后处理

        上述8个步骤,看似有点啰嗦,其实一般其中几个步骤就够了,以下给一个例子,可以参考下(看看就行不必执行):

import cv2
from openvino.inference_engine import IECore
import numpy as np
from timeit import default_timer as timer# ---------------------------Step 1. Initialize inference engine core--------------------------------------------------
ie = IECore()
device = "CPU"
# ---------------------------Step 2. Read a model in OpenVINO Intermediate Representation or ONNX format---------------
model_xml = "data/face-detection-0200.xml"
model_bin = "data/face-detection-0200.bin"
net = ie.read_network(model=model_xml)
# ---------------------------Step 3. Configure input & output----------------------------------------------------------
input_blob = next(iter(net.input_info))
output_blob = next(iter(net.outputs))
n, c, h, w = net.inputs[input_blob].shape
print("outputs's shape = ", net.outputs[output_blob].shape)src = cv2.imread("d:/Data/6.jpg")
#src_ = cv2.cvtColor(src, cv2.COLOR_BGR2RGB)
image = cv2.resize(src, (w, h))
image = image.transpose(2, 0, 1)
# ---------------------------Step 4. Loading model to the device-------------------------------------------------------
exec_net = ie.load_network(network=net, device_name=device)
# ---------------------------Step 5. Create infer request--------------------------------------------------------------
# ---------------------------Step 6. Prepare input---------------------------------------------------------------------
# ---------------------------Step 7. Do inference----------------------------------------------------------------------
tic = timer()
res = exec_net.infer(inputs={input_blob: [image]})
toc = timer()
print("the cost time is(ms): ", 1000*(toc - tic))
print("the latance is:", exec_net.requests[0].latency)
# ---------------------------Step 8. Process output--------------------------------------------------------------------

以上步骤范式比较固定,部署别的模型,你会发现很多代码都一样,复制粘贴而已,需要改的无非就是模型的输入和后处理。

三、人脸检测网络

        这个人脸检测模型backbone是mobilev2,人脸检测头是SSD目标检测的head,在此模型的训练期间,训练图像的大小调整为 256x256。上一节我们知道,模型部署只需要三步:图像预处理、推理、后处理;由于推理openvino帮咱们干了,咱们只需要写好模型输入和输出就行了。

输入信息

        在模型文件中,输入的名称为: `input`, 输入图像的shape为: `1, 3, 256, 256` 输入图像次序为 `B, C, H, W`, 其中:

  • `B` - batch size
  • `C` - 图像通道数,一般为3
  • `H` - image height
  • `W` - image width

输入图像的次序为: `BGR`.

输出信息

        网络输出特征图的shape为: `1, 1, 200, 7`,其中200表示候选目标数量.每一个候选目标是一个7维的向量,存储顺序为: [`image_id`, `label`, `conf`, `x_min`, `y_min`, `x_max`, `y_max`], 其中:

  • `image_id` - 图像在这个batch中的ID,不用管,因为本文是单batch推理
  •  `label` - 预测的类别ID(0 - face)
  •  `conf` - 置信度
  •  (`x_min`, `y_min`) - 矩形bbox左上角的点坐标
  •  (`x_max`, `y_max`) - 矩形bbox右下角的点坐标

四、源码测试

下面代码中,需要三个文件:输入图像,模型xml、bin文件,下载方法在文末。

import cv2
from openvino.inference_engine import IECore
import numpy as np
from timeit import default_timer as timer# ---------------------------Step 1. Initialize inference engine core--------------------------------------------------
ie = IECore()
device = "CPU"
# ---------------------------Step 2. Read a model in OpenVINO Intermediate Representation or ONNX format---------------
model_xml = "data/face-detection-0200.xml"
model_bin = "data/face-detection-0200.bin"
net = ie.read_network(model=model_xml)
# ---------------------------Step 3. Configure input & output----------------------------------------------------------
input_blob = next(iter(net.input_info))
output_blob = next(iter(net.outputs))
n, c, h, w = net.inputs[input_blob].shape
print("outputs's shape = ", net.outputs[output_blob].shape)src = cv2.imread("d:/Data/15.jpg")
#src_ = cv2.cvtColor(src, cv2.COLOR_BGR2RGB)
image = cv2.resize(src, (w, h))
image = image.transpose(2, 0, 1)
# ---------------------------Step 4. Loading model to the device-------------------------------------------------------
exec_net = ie.load_network(network=net, device_name=device)
# ---------------------------Step 5. Create infer request--------------------------------------------------------------
# ---------------------------Step 6. Prepare input---------------------------------------------------------------------
# ---------------------------Step 7. Do inference----------------------------------------------------------------------
tic = timer()
res = exec_net.infer(inputs={input_blob: [image]})
toc = timer()
print("the cost time is(ms): ", 1000*(toc - tic))
print("the latance is:", exec_net.requests[0].latency)
# ---------------------------Step 8. Process output--------------------------------------------------------------------
res = res[output_blob]
dets = res.reshape(-1, 7)
sh, sw, _ = src.shape
for det in dets:conf = det[2]if conf > 0.5:# calss_id...xmin = int(det[3] * sw)ymin = int(det[4] * sh)xmax = int(det[5] * sw)ymax = int(det[6] * sh)cv2.putText(src, str(round(conf, 3)), (xmin, ymin), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255), 1, 7)cv2.rectangle(src, (xmin, ymin), (xmax, ymax), (0, 255, 0), 2)
cv2.imshow("src", src)
cv2.waitKey(0)
cv2.destroyAllWindows()

效果图如图:

模型数据+图片:链接:https://pan.baidu.com/s/1srtz0WUr9liwyTb55hZv_w?pwd=1234 
提取码:1234

这篇关于openvino系列教程之人脸检测 mobilenetv2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/236974

相关文章

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形

Ubuntu固定虚拟机ip地址的方法教程

《Ubuntu固定虚拟机ip地址的方法教程》本文详细介绍了如何在Ubuntu虚拟机中固定IP地址,包括检查和编辑`/etc/apt/sources.list`文件、更新网络配置文件以及使用Networ... 1、由于虚拟机网络是桥接,所以ip地址会不停地变化,接下来我们就讲述ip如何固定 2、如果apt安

PyCharm 接入 DeepSeek最新完整教程

《PyCharm接入DeepSeek最新完整教程》文章介绍了DeepSeek-V3模型的性能提升以及如何在PyCharm中接入和使用DeepSeek进行代码开发,本文通过图文并茂的形式给大家介绍的... 目录DeepSeek-V3效果演示创建API Key在PyCharm中下载Continue插件配置Con

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

Spring Boot整合log4j2日志配置的详细教程

《SpringBoot整合log4j2日志配置的详细教程》:本文主要介绍SpringBoot项目中整合Log4j2日志框架的步骤和配置,包括常用日志框架的比较、配置参数介绍、Log4j2配置详解... 目录前言一、常用日志框架二、配置参数介绍1. 日志级别2. 输出形式3. 日志格式3.1 PatternL

MySQL8.2.0安装教程分享

《MySQL8.2.0安装教程分享》这篇文章详细介绍了如何在Windows系统上安装MySQL数据库软件,包括下载、安装、配置和设置环境变量的步骤... 目录mysql的安装图文1.python访问网址2javascript.点击3.进入Downloads向下滑动4.选择Community Server5.

CentOS系统Maven安装教程分享

《CentOS系统Maven安装教程分享》本文介绍了如何在CentOS系统中安装Maven,并提供了一个简单的实际应用案例,安装Maven需要先安装Java和设置环境变量,Maven可以自动管理项目的... 目录准备工作下载并安装Maven常见问题及解决方法实际应用案例总结Maven是一个流行的项目管理工具

本地私有化部署DeepSeek模型的详细教程

《本地私有化部署DeepSeek模型的详细教程》DeepSeek模型是一种强大的语言模型,本地私有化部署可以让用户在自己的环境中安全、高效地使用该模型,避免数据传输到外部带来的安全风险,同时也能根据自... 目录一、引言二、环境准备(一)硬件要求(二)软件要求(三)创建虚拟环境三、安装依赖库四、获取 Dee

MySql9.1.0安装详细教程(最新推荐)

《MySql9.1.0安装详细教程(最新推荐)》MySQL是一个流行的关系型数据库管理系统,支持多线程和多种数据库连接途径,能够处理上千万条记录的大型数据库,本文介绍MySql9.1.0安装详细教程,... 目录mysql介绍:一、下载 Mysql 安装文件二、Mysql 安装教程三、环境配置1.右击此电脑