Householder变换进行QR分解及其代码实现(C++)

2023-10-18 23:30

本文主要是介绍Householder变换进行QR分解及其代码实现(C++),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 简介
  • 前置理论
  • Householder进行QR分解
  • 代码实现

简介

初等变换工具如三角分解(LU分解)可以用于求解线性方程组,但确实存在一些限制。例如,对于病态(ill-conditioned)的线性方程组,LU分解可能会导致数值不稳定的结果。此外,对于不可逆矩阵,LU分解也不适用。

为了克服这些问题,引入了QR分解,其中矩阵分解为正交矩阵Q和上三角矩阵R。QR分解对于任何可逆矩阵都是适用的,并且可以提供数值稳定的解决方案。QR分解的实现可以借助施密特正交规范化、吉文斯变换和豪斯霍尔德变换等技术来完成。

在QR分解中,正交矩阵Q的列是正交的,这意味着它们满足Q的转置乘以Q等于单位矩阵。这种性质有助于减少数值误差的传播,并提供了数值稳定性。同时,上三角矩阵R包含了原始矩阵的重要信息,可以用于求解线性方程组等任务。

Householder变换是一种线性变换,它将一个向量投影到一个新的方向上,通常是在一个超平面上。它可以用来零化一个向量中除第一个元素外的所有元素,这使得我们可以将其用于QR分解中的反射操作。通过连续地应用一系列Householder变换,我们可以将原始矩阵A转化为上三角矩阵R。在这个过程中,我们也构建了正交矩阵Q,它将被用于最终的QR分解。

Householder变换的关键思想是找到一个反射面(或反射超平面),它可以将向量映射到零向量或某个特定方向上。这个变换的设计允许我们零化某些元素,从而实现了R的上三角形态。Householder变换在数值计算和线性代数中有广泛的应用,特别是在QR分解和特征值计算等领域。

前置理论

先看一个定理:

对任意二范数为1的向量 ω ∈ R n \omega \in {R^n} ωRn,其反射矩阵为: H = I − 2 ω ω T H = I - 2\omega {\omega ^T} H=I2ωωT,其中I为单位阵。反射阵H满足: H T = H H^{\rm{T}} = H HT=H H ∗ H = I H*H = I HH=I

简证:
H T = ( I − 2 ω ω T ) T = I − 2 [ ( ω T ) T ω T ] = I − 2 ω ω T {H^T} = {\left( {I - 2\omega {\omega ^T}} \right)^T} = I - 2\left[ {{{\left( {{\omega ^T}} \right)}^T}{\omega ^T}} \right] = I - 2\omega {\omega ^T} HT=(I2ωωT)T=I2[(ωT)TωT]=I2ωωT
H ∗ H = ( I − 2 ω ω T ) ∗ ( I − 2 ω ω T ) = I − 2 ω ω T − 2 ω ω T + 4 ω ( ω T ω ) ω T = I − 4 ω ω T + 4 ω ω T = I H * H = \left( {I - 2\omega {\omega ^T}} \right) * \left( {I - 2\omega {\omega ^T}} \right) = I - 2\omega {\omega ^T} - 2\omega {\omega ^T} + 4\omega \left( {{\omega ^T}\omega } \right){\omega ^T} = I - 4\omega {\omega ^T} + 4\omega {\omega ^T} = I HH=(I2ωωT)(I2ωωT)=I2ωωT2ωωT+4ω(ωTω)ωT=I4ωωT+4ωωT=I
反射变换可以理解为两向量关于一个法平面对称的过程。设超平面S(过原点,以w为法向量)即: S = { x ∣ ω T x = 0 , ∀ x ∈ R n } S = \{ x{|}{\omega ^T}x = 0,{\forall _x} \in {R^n}\} S={xωTx=0,xRn}

也就是: ∀ z , z ′ ∈ R n \forall z,z' \in {R^n} zzRn 若两向量二范数相等,则存在一个反射变换矩阵H 使 z ′ = H z z' = Hz z=Hz z’ 与z关于超平面S对称,如下图所示。
在这里插入图片描述
这一点比较重要,因此再通俗易懂的表达下:在一个n维空间中,只要两个向量的模相等,则可以找到一个超平面,使两向量关于该超平面对称,也就是能找到一个H使上式成立。

Householder进行QR分解

首先,我们期望将任意实阵A分解为QR 即A = Q*R,其中Q为对称正交阵,R为上三角阵。
假设待分解的矩阵A如下:
在这里插入图片描述
于A中每列向量v,可以找到一个单位向量使 v → = α e → \mathop v\limits^ \to = \alpha \mathop e\limits^ \to v=αe,那么则可以找到H使 H v → = α e → H\overrightarrow v \ = \alpha \overrightarrow e Hv  =αe
则可以将A变换为
在这里插入图片描述
通过以上变换,第一列已经符合上三角阵,接着对第二列进行变换,此时的矩阵应该比第一次变换小一阶,如下图所示(红色部分即为待变换部分)
在这里插入图片描述
通过变换,矩阵的阶数会越来越小。所以将A变换为上三角,则可看为对A作一系列的H变换即:
H n . . . . H 3 H 2 H 1 A = R {H_n}....{H_3}{H_2}{H_1}A = R Hn....H3H2H1A=R
由于H对称正交,则 Q T = H n . . . . H 1 {Q^T} = {H_n}....{H_1} QT=Hn....H1,Q也是对称正交,则 A = Q R A = \ Q R A= QR

代码实现

算法实现过程:(第K次变换矩阵H求解如下)
v K → = A K ( A K 为子阵,长度为 ( n − k + 1 ) ) v K → = v K → − ∥ v k → ∥ ⋅ e k → v k → = v k → ∥ v ∥ H k = I − 2 v k ∗ v k T \overrightarrow {{\ v _K}} = {A_K}\left( {{A_K}为子阵,长度为(n - k + 1)} \right)\\\overrightarrow {{\ v _K}} = \overrightarrow {{\ v _K}} - \left\| {\overrightarrow {{\ v _k}} } \right\| \cdot \overrightarrow {{e_k}}\\\overrightarrow {{\ v _k}} = \frac{{\overrightarrow {{\ v _k}} }}{{\left\| \ v \right\|}}\\\ {H_k} = I - 2{\ v _k} * {\ v _k}^T  vK =AK(AK为子阵,长度为(nk+1)) vK = vK  vk ek  vk = v vk  Hk=I2 vk vkT
使用Eigen库实现

#include <iostream>
#include <vector>
#include <Eigen/Dense>
#include <Eigen/Core>
void householderQR(Eigen::MatrixXd &A, Eigen::MatrixXd &Q, Eigen::MatrixXd &R) {int m = A.rows();int n = A.cols();Q = Eigen::MatrixXd::Identity(m, m);R = A;for (int k = 0; k < n; ++k) {Eigen::VectorXd x = R.block(k, k, m - k, 1);Eigen::VectorXd e1 = Eigen::VectorXd::Zero(m - k);e1(0) = 1;Eigen::VectorXd v = x - x.norm() * e1;v /= v.norm();Eigen::MatrixXd H = Eigen::MatrixXd::Identity(m, m);H.block(k, k, m - k, m - k) -= 2.0 * v * v.transpose();R = H * R;Q = Q * H.transpose();}
}
int main() {Eigen::MatrixXd A(3, 3); // 创建一个3x3的示例矩阵// 填充矩阵AA << 12, -51, 4,6, 167, -68,-4, 24, -41;Eigen::MatrixXd Q, R;householderQR(A, Q, R);std::cout << "矩阵 Q:\n" << Q << "\n\n";std::cout << "矩阵 R:\n" << R << "\n\n";Eigen::MatrixXd reconstructed_A = Q * R;std::cout << "重构的矩阵 A:\n" << reconstructed_A << "\n\n";return 0;
}

这篇关于Householder变换进行QR分解及其代码实现(C++)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/235793

相关文章

C++使用栈实现括号匹配的代码详解

《C++使用栈实现括号匹配的代码详解》在编程中,括号匹配是一个常见问题,尤其是在处理数学表达式、编译器解析等任务时,栈是一种非常适合处理此类问题的数据结构,能够精确地管理括号的匹配问题,本文将通过C+... 目录引言问题描述代码讲解代码解析栈的状态表示测试总结引言在编程中,括号匹配是一个常见问题,尤其是在

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Nginx设置连接超时并进行测试的方法步骤

《Nginx设置连接超时并进行测试的方法步骤》在高并发场景下,如果客户端与服务器的连接长时间未响应,会占用大量的系统资源,影响其他正常请求的处理效率,为了解决这个问题,可以通过设置Nginx的连接... 目录设置连接超时目的操作步骤测试连接超时测试方法:总结:设置连接超时目的设置客户端与服务器之间的连接

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::