本文主要是介绍使用卡尔曼滤波估计自由落体时的位置和速度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
问题:通过传感器可以测量出自由落体时的加速度、速度和位置,通过卡尔曼滤波估计速度和位置。
坐标系:向下为正,初始位置和速度都为0
先上卡尔曼滤波公式:
然后上代码:
# -*- coding: utf-8 -*
# 向下为正方向import numpy as np
import matplotlib.pyplot as pltdef main():# 时间共1s,采样周期10msdt = 0.01t = [i * dt for i in range(0, 100)]g = 9.8# 真实值x_true_mat = np.mat(0.5 * g * np.multiply(np.array(t), np.array(t)))v_true_mat = g * np.mat(t)u_true_mat = np.mat([g for i in range(0, 100)])# 噪声x_noise = np.round(np.random.normal(0, 0.1, 100), 2)v_noise = np.round(np.random.normal(0, 0.1, 100), 2)u_noise = np.round(np.random.normal(0, 0.01, 100), 2)x_noise_mat = np.mat(x_noise)v_noise_mat = np.mat(v_noise)u_noise_mat = np.mat(u_noise)# 测量值x_z_mat = x_true_mat + x_noise_matv_z_mat = v_true_mat + v_noise_matu_mat = u_true_mat + u_noise_mat# 定义x的初始状态x_mat = np.mat([[0], [0]])# 定义初始状态协方差矩阵p_mat = np.mat([[1, 0], [0, 1]])# 状态转移矩阵f_mat = np.mat([[1, dt], [0, 1]])# 控制矩阵b_mat = np.mat([[0.5 * dt * dt], [dt]])# 定义状态转移协方差矩阵,这里我们把协方差设置的很小,因为觉得状态转移矩阵准确度高q_mat = np.mat([[1.0 * 1.0 * dt * dt, 0], [0, 1.0 * 1.0 * dt * dt]])# 定义观测矩阵h_mat = np.mat([[1, 0], [0, 1]])# 定义观测噪声协方差r_mat = np.mat([[1.0 * 1.0, 0], [0, 2.5 * 2.5]])for i in range(100):x_predict = f_mat * x_mat + b_mat * u_mat[0, i]p_predict = f_mat * p_mat * f_mat.T + q_matk = p_predict * h_mat.T * (h_mat * p_predict * h_mat.T + r_mat).Izt = np.mat([[x_z_mat[0, i]], [v_z_mat[0, i]]])x_mat = x_predict + k * (zt - h_mat * x_predict)p_mat = (p_mat - k * h_mat) * p_predictplt.plot(t[i], x_z_mat[0, i], 'ro', markersize=1)plt.plot(t[i], v_z_mat[0, i], 'ro', markersize=1)plt.plot(t[i], x_mat[0, 0], 'bo', markersize=1)plt.plot(t[i], x_mat[1, 0], 'bo', markersize=1)plt.show()if __name__ == '__main__':main()
结果如下:
图中的红色点分别是观测的位置和速度,蓝色点为估计出的位置和速度。
这篇关于使用卡尔曼滤波估计自由落体时的位置和速度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!