使用卡尔曼滤波估计自由落体时的位置和速度

2023-10-18 09:59

本文主要是介绍使用卡尔曼滤波估计自由落体时的位置和速度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题:通过传感器可以测量出自由落体时的加速度、速度和位置,通过卡尔曼滤波估计速度和位置。

坐标系:向下为正,初始位置和速度都为0

先上卡尔曼滤波公式:

然后上代码:

# -*- coding: utf-8 -*
# 向下为正方向import numpy as np
import matplotlib.pyplot as pltdef main():# 时间共1s,采样周期10msdt = 0.01t = [i * dt for i in range(0, 100)]g = 9.8# 真实值x_true_mat = np.mat(0.5 * g * np.multiply(np.array(t), np.array(t)))v_true_mat = g * np.mat(t)u_true_mat = np.mat([g for i in range(0, 100)])# 噪声x_noise = np.round(np.random.normal(0, 0.1, 100), 2)v_noise = np.round(np.random.normal(0, 0.1, 100), 2)u_noise = np.round(np.random.normal(0, 0.01, 100), 2)x_noise_mat = np.mat(x_noise)v_noise_mat = np.mat(v_noise)u_noise_mat = np.mat(u_noise)# 测量值x_z_mat = x_true_mat + x_noise_matv_z_mat = v_true_mat + v_noise_matu_mat = u_true_mat + u_noise_mat# 定义x的初始状态x_mat = np.mat([[0], [0]])# 定义初始状态协方差矩阵p_mat = np.mat([[1, 0], [0, 1]])# 状态转移矩阵f_mat = np.mat([[1, dt], [0, 1]])# 控制矩阵b_mat = np.mat([[0.5 * dt * dt], [dt]])# 定义状态转移协方差矩阵,这里我们把协方差设置的很小,因为觉得状态转移矩阵准确度高q_mat = np.mat([[1.0 * 1.0 * dt * dt, 0], [0, 1.0 * 1.0 * dt * dt]])# 定义观测矩阵h_mat = np.mat([[1, 0], [0, 1]])# 定义观测噪声协方差r_mat = np.mat([[1.0 * 1.0, 0], [0, 2.5 * 2.5]])for i in range(100):x_predict = f_mat * x_mat + b_mat * u_mat[0, i]p_predict = f_mat * p_mat * f_mat.T + q_matk = p_predict * h_mat.T * (h_mat * p_predict * h_mat.T + r_mat).Izt = np.mat([[x_z_mat[0, i]], [v_z_mat[0, i]]])x_mat = x_predict + k * (zt - h_mat * x_predict)p_mat = (p_mat - k * h_mat) * p_predictplt.plot(t[i], x_z_mat[0, i], 'ro', markersize=1)plt.plot(t[i], v_z_mat[0, i], 'ro', markersize=1)plt.plot(t[i], x_mat[0, 0], 'bo', markersize=1)plt.plot(t[i], x_mat[1, 0], 'bo', markersize=1)plt.show()if __name__ == '__main__':main()

结果如下:

图中的红色点分别是观测的位置和速度,蓝色点为估计出的位置和速度。

这篇关于使用卡尔曼滤波估计自由落体时的位置和速度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/231836

相关文章

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

如何使用Lombok进行spring 注入

《如何使用Lombok进行spring注入》本文介绍如何用Lombok简化Spring注入,推荐优先使用setter注入,通过注解自动生成getter/setter及构造器,减少冗余代码,提升开发效... Lombok为了开发环境简化代码,好处不用多说。spring 注入方式为2种,构造器注入和setter

MySQL中比较运算符的具体使用

《MySQL中比较运算符的具体使用》本文介绍了SQL中常用的符号类型和非符号类型运算符,符号类型运算符包括等于(=)、安全等于(=)、不等于(/!=)、大小比较(,=,,=)等,感兴趣的可以了解一下... 目录符号类型运算符1. 等于运算符=2. 安全等于运算符<=>3. 不等于运算符<>或!=4. 小于运

使用zip4j实现Java中的ZIP文件加密压缩的操作方法

《使用zip4j实现Java中的ZIP文件加密压缩的操作方法》本文介绍如何通过Maven集成zip4j1.3.2库创建带密码保护的ZIP文件,涵盖依赖配置、代码示例及加密原理,确保数据安全性,感兴趣的... 目录1. zip4j库介绍和版本1.1 zip4j库概述1.2 zip4j的版本演变1.3 zip4

Python 字典 (Dictionary)使用详解

《Python字典(Dictionary)使用详解》字典是python中最重要,最常用的数据结构之一,它提供了高效的键值对存储和查找能力,:本文主要介绍Python字典(Dictionary)... 目录字典1.基本特性2.创建字典3.访问元素4.修改字典5.删除元素6.字典遍历7.字典的高级特性默认字典

使用Python构建一个高效的日志处理系统

《使用Python构建一个高效的日志处理系统》这篇文章主要为大家详细讲解了如何使用Python开发一个专业的日志分析工具,能够自动化处理、分析和可视化各类日志文件,大幅提升运维效率,需要的可以了解下... 目录环境准备工具功能概述完整代码实现代码深度解析1. 类设计与初始化2. 日志解析核心逻辑3. 文件处

一文详解如何使用Java获取PDF页面信息

《一文详解如何使用Java获取PDF页面信息》了解PDF页面属性是我们在处理文档、内容提取、打印设置或页面重组等任务时不可或缺的一环,下面我们就来看看如何使用Java语言获取这些信息吧... 目录引言一、安装和引入PDF处理库引入依赖二、获取 PDF 页数三、获取页面尺寸(宽高)四、获取页面旋转角度五、判断

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定