使用卡尔曼滤波估计自由落体时的位置和速度

2023-10-18 09:59

本文主要是介绍使用卡尔曼滤波估计自由落体时的位置和速度,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题:通过传感器可以测量出自由落体时的加速度、速度和位置,通过卡尔曼滤波估计速度和位置。

坐标系:向下为正,初始位置和速度都为0

先上卡尔曼滤波公式:

然后上代码:

# -*- coding: utf-8 -*
# 向下为正方向import numpy as np
import matplotlib.pyplot as pltdef main():# 时间共1s,采样周期10msdt = 0.01t = [i * dt for i in range(0, 100)]g = 9.8# 真实值x_true_mat = np.mat(0.5 * g * np.multiply(np.array(t), np.array(t)))v_true_mat = g * np.mat(t)u_true_mat = np.mat([g for i in range(0, 100)])# 噪声x_noise = np.round(np.random.normal(0, 0.1, 100), 2)v_noise = np.round(np.random.normal(0, 0.1, 100), 2)u_noise = np.round(np.random.normal(0, 0.01, 100), 2)x_noise_mat = np.mat(x_noise)v_noise_mat = np.mat(v_noise)u_noise_mat = np.mat(u_noise)# 测量值x_z_mat = x_true_mat + x_noise_matv_z_mat = v_true_mat + v_noise_matu_mat = u_true_mat + u_noise_mat# 定义x的初始状态x_mat = np.mat([[0], [0]])# 定义初始状态协方差矩阵p_mat = np.mat([[1, 0], [0, 1]])# 状态转移矩阵f_mat = np.mat([[1, dt], [0, 1]])# 控制矩阵b_mat = np.mat([[0.5 * dt * dt], [dt]])# 定义状态转移协方差矩阵,这里我们把协方差设置的很小,因为觉得状态转移矩阵准确度高q_mat = np.mat([[1.0 * 1.0 * dt * dt, 0], [0, 1.0 * 1.0 * dt * dt]])# 定义观测矩阵h_mat = np.mat([[1, 0], [0, 1]])# 定义观测噪声协方差r_mat = np.mat([[1.0 * 1.0, 0], [0, 2.5 * 2.5]])for i in range(100):x_predict = f_mat * x_mat + b_mat * u_mat[0, i]p_predict = f_mat * p_mat * f_mat.T + q_matk = p_predict * h_mat.T * (h_mat * p_predict * h_mat.T + r_mat).Izt = np.mat([[x_z_mat[0, i]], [v_z_mat[0, i]]])x_mat = x_predict + k * (zt - h_mat * x_predict)p_mat = (p_mat - k * h_mat) * p_predictplt.plot(t[i], x_z_mat[0, i], 'ro', markersize=1)plt.plot(t[i], v_z_mat[0, i], 'ro', markersize=1)plt.plot(t[i], x_mat[0, 0], 'bo', markersize=1)plt.plot(t[i], x_mat[1, 0], 'bo', markersize=1)plt.show()if __name__ == '__main__':main()

结果如下:

图中的红色点分别是观测的位置和速度,蓝色点为估计出的位置和速度。

这篇关于使用卡尔曼滤波估计自由落体时的位置和速度的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/231836

相关文章

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

Hadoop数据压缩使用介绍

一、压缩原则 (1)运算密集型的Job,少用压缩 (2)IO密集型的Job,多用压缩 二、压缩算法比较 三、压缩位置选择 四、压缩参数配置 1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器 2)要在Hadoop中启用压缩,可以配置如下参数

Makefile简明使用教程

文章目录 规则makefile文件的基本语法:加在命令前的特殊符号:.PHONY伪目标: Makefilev1 直观写法v2 加上中间过程v3 伪目标v4 变量 make 选项-f-n-C Make 是一种流行的构建工具,常用于将源代码转换成可执行文件或者其他形式的输出文件(如库文件、文档等)。Make 可以自动化地执行编译、链接等一系列操作。 规则 makefile文件

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的

【北交大信息所AI-Max2】使用方法

BJTU信息所集群AI_MAX2使用方法 使用的前提是预约到相应的算力卡,拥有登录权限的账号密码,一般为导师组共用一个。 有浏览器、ssh工具就可以。 1.新建集群Terminal 浏览器登陆10.126.62.75 (如果是1集群把75改成66) 交互式开发 执行器选Terminal 密码随便设一个(需记住) 工作空间:私有数据、全部文件 加速器选GeForce_RTX_2080_Ti

【Linux 从基础到进阶】Ansible自动化运维工具使用

Ansible自动化运维工具使用 Ansible 是一款开源的自动化运维工具,采用无代理架构(agentless),基于 SSH 连接进行管理,具有简单易用、灵活强大、可扩展性高等特点。它广泛用于服务器管理、应用部署、配置管理等任务。本文将介绍 Ansible 的安装、基本使用方法及一些实际运维场景中的应用,旨在帮助运维人员快速上手并熟练运用 Ansible。 1. Ansible的核心概念