Node2Vec实战---《悲惨世界》人物图嵌入

2023-10-18 08:50

本文主要是介绍Node2Vec实战---《悲惨世界》人物图嵌入,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. pip各个包后导入

import networkx as nx # 图数据挖掘
import numpy as np # 数据分析
import random # 随机数# 数据可视化
import matplotlib.pyplot as plt
%matplotlib inline
plt.rcParams['font.sans-serif']=['SimHei']  # 用来正常显示中文标签  
plt.rcParams['axes.unicode_minus']=False  # 用来正常显示负号

2. 导入内置的数据集

# 《悲惨世界》人物数据集
G = nx.les_miserables_graph()

3. 可视化图,with_labels=True,以此给每个节点的名称显示出来

# 可视化
plt.figure(figsize=(15,14))
pos = nx.spring_layout(G, seed=5)
nx.draw(G, pos, with_labels=True) # 给每个节点的名称显示出来
plt.show()

4. 接下来导入Node2Vec模型,并设置其模型参数,并将最终得到的各个节点的嵌入向量embedding赋予给变量X

from node2vec import Node2Vec# 设置node2vec参数
node2vec = Node2Vec(G, dimensions=32,  # 嵌入维度p=1,            # 回家参数q=3,          # 外出参数walk_length=10, # 随机游走最大长度num_walks=600,  # 每个节点作为起始节点生成的随机游走个数workers=4       # 并行线程数)# p=1, q=0.5, n_clusters=6。DFS深度优先搜索,挖掘同质社群
# p=1, q=2, n_clusters=3。BFS宽度优先搜索,挖掘节点的结构功能。# 训练Node2Vec,参数文档见 gensim.models.Word2Vec
model = node2vec.fit(window=3,    # Skip-Gram窗口大小min_count=1,  # 忽略出现次数低于此阈值的节点(词)batch_words=4 # 每个线程处理的数据量)X = model.wv.vectors # 77个节点的嵌入向量

5. 接下来用Kmeans聚类算法,进行节点Embedding聚类可视化

#DBSCAN聚类
# from sklearn.cluster import DBSCAN
# cluster_labels = DBSCAN(eps=0.5,min samples=6).fit(X).labels
# print(cluster labels)# KMeans聚类
from sklearn.cluster import KMeans
cluster_labels = KMeans(n_clusters=3).fit(X).labels_ # 对X进行聚类,聚成三簇,
print(cluster_labels) # 得到聚类的label

print(cluster_labels)的结果:

将词汇表的节点顺序转为networkx中的节点顺序。

colors = []
nodes = list(G.nodes)
for node in nodes: # 按 networkx 的顺序遍历每个节点idx = model.wv.key_to_index[str(node)] # 获取这个节点在 embedding 中的索引号colors.append(cluster_labels[idx]) # 获取这个节点的聚类结果

把colors放到原图中可视化,可视化聚类效果如下:

plt.figure(figsize=(15,14))
pos = nx.spring_layout(G, seed=10)
nx.draw(G, pos, node_color=colors, with_labels=True)
plt.show()

上图的效果其实很像原论文里所谓DFS的效果,也就是挖掘同质社群,我觉得更通俗一点,就是相邻的节点其实就是一类。

 6. 将Embedding用PCA降维到2维,进行节点embedding降维可视化

# 将Embedding用PCA降维到2维
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
embed_2d = pca.fit_transform(X)# # 将Embedding用TSNE降维到2维
# from sklearn.manifold import TSNE
# tsne = TSNE(n_components=2, n_iter=5000)
# embed_2d = tsne.fit_transform(X)# plt.figure(figsize=(14,14))
plt.scatter(embed_2d[:, 0], embed_2d[:, 1]) # 绘制散点图
plt.show()

7. 找到和拿破仑相似的节点

8. 对edge连接进行embedding

from node2vec.edges import HadamardEmbedder # 导入工具包# Hadamard 二元操作符:两个 Embedding 对应元素相乘
edges_embs = HadamardEmbedder(keyed_vectors=model.wv)

后言:虽说调包也不用考虑什么原理问题(),但是针对O(1)的采样方法alias sampling我还是想说下我自己对此的理解,大佬解说的视频:
因为好像有可能事件的概率不一定是相等的,就是不均匀的,一开始我还想用哈希表,用key:概率区间的某个值,value:事件编号,发现好像即使是0~1里面都有无数个实数,那就不可能hash了()
也就是如果“把四个柱子加在一起,然后直接让它们原本的大小等于自己的区间长度”,不太可能存在 概率映射到事件 的情况。
但是经过alias sampling以后,直接都是均匀的,其实就可以直接定位到某个区间了,剩下就取alias事件或者是原来的事件就行了,因为那个区间只可能是这两种情况 。

这篇关于Node2Vec实战---《悲惨世界》人物图嵌入的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/231525

相关文章

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Golang使用minio替代文件系统的实战教程

《Golang使用minio替代文件系统的实战教程》本文讨论项目开发中直接文件系统的限制或不足,接着介绍Minio对象存储的优势,同时给出Golang的实际示例代码,包括初始化客户端、读取minio对... 目录文件系统 vs Minio文件系统不足:对象存储:miniogolang连接Minio配置Min

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

C#实战|大乐透选号器[6]:实现实时显示已选择的红蓝球数量

哈喽,你好啊,我是雷工。 关于大乐透选号器在前面已经记录了5篇笔记,这是第6篇; 接下来实现实时显示当前选中红球数量,蓝球数量; 以下为练习笔记。 01 效果演示 当选择和取消选择红球或蓝球时,在对应的位置显示实时已选择的红球、蓝球的数量; 02 标签名称 分别设置Label标签名称为:lblRedCount、lblBlueCount

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

滚雪球学Java(87):Java事务处理:JDBC的ACID属性与实战技巧!真有两下子!

咦咦咦,各位小可爱,我是你们的好伙伴——bug菌,今天又来给大家普及Java SE啦,别躲起来啊,听我讲干货还不快点赞,赞多了我就有动力讲得更嗨啦!所以呀,养成先点赞后阅读的好习惯,别被干货淹没了哦~ 🏆本文收录于「滚雪球学Java」专栏,专业攻坚指数级提升,助你一臂之力,带你早日登顶🚀,欢迎大家关注&&收藏!持续更新中,up!up!up!! 环境说明:Windows 10

用Unity2D制作一个人物,实现移动、跳起、人物静止和动起来时的动画:中(人物移动、跳起、静止动作)

上回我们学到创建一个地形和一个人物,今天我们实现一下人物实现移动和跳起,依次点击,我们准备创建一个C#文件 创建好我们点击进去,就会跳转到我们的Vision Studio,然后输入这些代码 using UnityEngine;public class Move : MonoBehaviour // 定义一个名为Move的类,继承自MonoBehaviour{private Rigidbo