【实用小功能10】python运行加速神器——numba(详细教学版)

2023-10-18 04:28

本文主要是介绍【实用小功能10】python运行加速神器——numba(详细教学版),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

      • 1. 为什么python这么慢?
        • 1.1 动态变量
        • 1.2. 解释性语言
      • 2. Numba的介绍和使用
        • 2.1 numba加速python小实例
        • 2.2 个人经验
        • 2.3 其他

1. 为什么python这么慢?

python比c++慢,尤其是存在循环的情况下,python和c+的区别主要有:

1.1 动态变量

c++中需要对变量类型有严格的定义,比如int或者float类型。但是python不需要,它去掉了变量申明和数据类型。python是一种动态类型语言,它会在做运算的时候根据变量的值自动推断出其类型,这种动态类型的特性使得python编写更加简单和灵活,但同时增加了一定的时间开销,反观c/c++在运算时则只是简单的内存读写和机器指令(加减乘除…),所以c/c++的速度比python快很多。

1.2. 解释性语言

c/c++是编译型语言,需要先将源代码编译成机器码,然后再运行程序。

python是解释性语言,它的源代码是直接由解释器解释执行的,这意味着在编写python代码时,不需要先将代码编译成可执行文件,而是可以直接运行代码。所以python的执行速度相较于c/c++会慢很多。

这个问题的一种解决方法就是即时编译JIT(Just-in-time compilation)JIT编译器会动态地将高级语言编写的代码转换为机器码,可以直接由计算机的处理器执行,这是在运行时完成的,也就是代码执行之前,因此称为“即时”。JIT针对特定的硬件和操作系统进行代码优化,可以使得python代码获得显著的性能提升。

2. Numba的介绍和使用

github主页:https://github.com/numba/numba

在线文档:https://numba.readthedocs.io/en/stable/index.html

可直接pip/conda下载库

conda install numba
pip install numba

numba非常适合于使用了numpy数组、函数和循环的代码,使用的方法就是装饰器,用它!用的好时间节省个几十倍。numba的可使用范围:

  • 操作系统:Windows (64 bit), OSX, Linux (64 bit).
  • 架构:x86, x86_64, ppc64le, armv8l (aarch64), M1/Arm64.
  • GPU:Nvidia CUDA.
  • CPython
  • NumPy版本:1.22~1.25
2.1 numba加速python小实例
  • 使用python计算一个矩阵的所有元素的和

  • 原始代码

def cal_sum(a): result = 0 for i in range(a.shape[0]): for j in range(a.shape[1]): result += a[i, j] return result start = time.perf_counter()
a = np.random.random((5000, 5000)) 
result = cal_sum(a)
end = time.perf_counter()
print("原始代码耗时:{}s".format((end - start)))#OUT:
#原始代码耗时:5.725140199996531s
  • 使用numba加速
import numba@numba.jit(nopython=True) 
def cal_sum(a): result = 0 for i in range(a.shape[0]): for j in range(a.shape[1]): result += a[i, j] return result start = time.perf_counter()
a = np.random.random((5000, 5000)) 
result = cal_sum(a)
end = time.perf_counter()
print("加速后耗时:{}s".format((end - start)))#OUT:
#加速后耗时:0.2892118000017945s

@jit(nopython=True)@njit是等同的,这个选项指示numba在编译时尽可能地避免使用python对象,将python代码转换为更快的机器码,而不是使用python解释器来执行代码。

  • 多次调用同一个使用了numba加速的函数

numba在第首次调用函数的时候进行了编译,但当编译发生后,numba会将该函数的机器码进行缓存,如果再次调用该函数,它会直接从缓存中加载,而不需要再次编译。简而言之,在一段代码中的使用了numba的函数,第二次、第三次…调用该函数运算都要比第一次耗时更少

x = np.arange(100).reshape(10, 10)@jit(nopython=True)
def go_fast(a):trace = 0.0for i in range(a.shape[0]):trace += np.tanh(a[i, i])return a + tracestart = time.perf_counter()
go_fast(x)
end = time.perf_counter()
print("首次调用耗时:{}s".format((end - start)))start = time.perf_counter()
go_fast(x)
end = time.perf_counter()
print("再次调用耗时:{}s".format((end - start)))#OUT:
#首次调用耗时:0.16958359999989625s
#再次调用耗时:4.7599998652003706e-05s
  • 使用并行加速【失败,原因还未知】

官方使用说明网址:numba-parallel

拿了官方的代码对比了下未使用并行和使用并行的,但是并行的反而更慢,没仔细细究缘由。

from numba import njit@njit()
def prange_test(A):s = 0for i in range(A.shape[0]):s += A[i]return sstart = time.perf_counter()
a = np.arange(1000)
result = prange_test(a)
end = time.perf_counter()
print("无并行耗时:{}s".format((end - start)))#OUT:
#无并行耗时:0.07213479999336414s
from numba import njit, prange@njit(parallel=True)
def prange_test(A):s = 0# Without "parallel=True" in the jit-decorator# the prange statement is equivalent to rangefor i in prange(A.shape[0]):s += A[i]return sstart = time.perf_counter()
a = np.arange(1000)
result = prange_test(a)
end = time.perf_counter()
print("并行耗时:{}s".format((end - start)))#OUT:
#并行耗时:0.36391139999614097s
2.2 个人经验

上面的函数比较简单,但是在实际使用中我们的函数可能复杂很多,简单地直接在函数上添加一个装饰器会出现各种报错,我们需要针对问题调整函数代码,大概陈列几个我遇到的问题及解决的方法。

  • 报错1
TypingError: Failed in nopython mode pipeline (step: nopython frontend)
Cannot infer the type of variable 'result', have imprecise type: list(undefined)<iv=None>. For Numba to be able to compile a list, the list must have a known and
precise type that can be inferred from the other variables. Whilst sometimes
the type of empty lists can be inferred, this is not always the case, see this
documentation for help:https://numba.pydata.org/numba-doc/latest/user/troubleshoot.html#my-code-has-an-untyped-list-problem

有些报错,会给个网址告诉你报错原因,点进去认真看下然后照着意思修改修改自己的代码就行了,但这个问题的解决方法如下:

@numba.jit(nopython=True) 
def test(): result, result1 = [], 0return result, result1test()# 改为
@numba.jit(nopython=True) 
def test(): result = []result1 = 0return result, result1test()
  • 报错2:
TypingError: Failed in nopython mode pipeline (step: nopython frontend)
Unknown attribute 'tolist' of type array(float32, 1d, C)...
Untyped global name 'input': Cannot determine Numba type of <class 'method'>

这样的问题是因为numba现在还有一些函数是不支持,比如上面python自带的input()函数和数组的tolist()函数,遇到这些问题的时候解决方法就是使用同样功能的且numba支持的函数or自己重写一个函数。

  • 报错3
def test_func():return True@jit(nopython=True)
def test(): flag = test_func()test()
TypingError: Failed in nopython mode pipeline (step: nopython frontend)
Untyped global name 'test_func': Cannot determine Numba type of <class 'function'>

这个问题是numba不支持函数中嵌套自己的函数,解决方法就是把调用的函数合并到一个函数中。

  • 报错4

会有一些与list列表相关的报错,numba貌似很不支持列表操作,尤其是嵌套列表类似[[[1,2],[2,3]],[[2,2],[8,3]]],解决方法是将这种列表改为数组进行操作。

2.3 其他

numba还提供了很多其他加速方法(我还没试):

  • 想节省编译时间,numba提供了提前编译模式:Ahead-of-Time compilation
  • 使用GPU:cuda-index

参考:Python 提速大杀器之 numba 篇

这篇关于【实用小功能10】python运行加速神器——numba(详细教学版)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/230158

相关文章

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

Java CompletableFuture如何实现超时功能

《JavaCompletableFuture如何实现超时功能》:本文主要介绍实现超时功能的基本思路以及CompletableFuture(之后简称CF)是如何通过代码实现超时功能的,需要的... 目录基本思路CompletableFuture 的实现1. 基本实现流程2. 静态条件分析3. 内存泄露 bug

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过

C#实现系统信息监控与获取功能

《C#实现系统信息监控与获取功能》在C#开发的众多应用场景中,获取系统信息以及监控用户操作有着广泛的用途,比如在系统性能优化工具中,需要实时读取CPU、GPU资源信息,本文将详细介绍如何使用C#来实现... 目录前言一、C# 监控键盘1. 原理与实现思路2. 代码实现二、读取 CPU、GPU 资源信息1.

Python调用另一个py文件并传递参数常见的方法及其应用场景

《Python调用另一个py文件并传递参数常见的方法及其应用场景》:本文主要介绍在Python中调用另一个py文件并传递参数的几种常见方法,包括使用import语句、exec函数、subproce... 目录前言1. 使用import语句1.1 基本用法1.2 导入特定函数1.3 处理文件路径2. 使用ex

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf