使用Python + OpenCV来实现脸部和眼睛的检测

2023-10-18 04:10

本文主要是介绍使用Python + OpenCV来实现脸部和眼睛的检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


使用Python + OpenCV来实现脸部和眼睛的检测

本篇文章使用Python和OpenCV中的Haar特征分类器对人脸及眼睛进行检测和追踪。在开始之前,有几件准备工作要完成。

  • 第一,你需要有一个摄像头,如果没有的话也可以使用视频文件来替代。
  • 第二,需要在python中安装OpenCV库。具体的方法是在这里下载相应的wheel(.whl)文件,并使用pip进行安装。
  • 第三,下载OpenCV中的Haar特征分类器,你可以从Opencv官网下载源程序解压后获得Haar特征分类器,也可以直接下载所需的xml文件。

在完成准备工作后,我们开始进行人脸及眼睛的检测和追踪工作。首先导入所需使用的库文件。这里我们只需要使用numpy和cv2两个库。

 
  1. #导入所需库文件 
  2.  
  3. import numpy as np 
  4.  
  5. import cv2  

加载Haar特征分类器中的面部识别和眼睛识别两个xml文件。如何你还需要识别更多的元素也在这里一并加载。

 
  1. #加载面部识别文件(请按文件实际存储路径进行调整) 
  2.  
  3. #https://github.com/Itseez/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml 
  4.  
  5. face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml'
  6.  
  7. #加载眼部识别文件(请按文件实际存储路径进行调整) 
  8.  
  9. #https://github.com/Itseez/opencv/blob/master/data/haarcascades/haarcascade_eye.xml 
  10.  
  11. eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml' 

打开你的摄像头来获取视频,到这一步摄像头开始工作,但还没有任何影像输出。如果没有摄像头可以使用电脑里的视频文件进行替代。

 
  1. #打开摄像头获取视频 
  2. cap = cv2.VideoCapture(0)  

我们同时将对摄像头获取的图像进行保存,这里对视频文件进行处理并设置保存路径及视频尺寸。(这一步不是必须的操作)

 
  1. #编译并输出保存视频 
  2. fourcc = cv2.VideoWriter_fourcc(*'XVID'
  3. out = cv2.VideoWriter('output.avi',fourcc, 20.0, (640,480))  

开始获取并处理视频内容。下面是一个无限的循环结构,通过按键q可以结束循环。在这个循环中ret获取摄像头是否有返回的布尔值,img获取摄像头拍摄的视频内容。我们首先将摄像头获取的彩色图像转化为灰度图像。后续的操作将主要在灰度图像上完成,然后再使用灰度图像中的坐标对原始的彩色图像进行标记和输出。图像转化为灰度后首先进行人脸检测,然后在人脸检测的基础上再进行眼睛检测,这样做的原因有两点,1,避免面部以外的物体被错误的识别为眼睛,2,眼睛识别算法需要一些眼睛周围的面部特征来进行检测,从而提高准确率。

随后使用矩形绘制出人脸的位置和眼睛的位置,在设置绘制颜色时需要注意,OpenCV中的颜色值并不是RGB,而是BRG。检测和绘制完成后对图像进行输出。这时可以在视频窗口中看到被标记的面部和眼睛。由于我们使用的Haar特征分类器是正面面部识别,因此需要正对摄像头。如果面部发生偏转则无法识别。

 
  1. #无限循环 
  2. while(True): 
  3.     #获取视频及返回状态 
  4.     ret, img = cap.read() 
  5.     #将获取的视频转化为灰色 
  6.     gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 
  7.     #检测视频中的人脸,并用vector保存人脸的坐标、大小(用矩形表示) 
  8.     faces = face_cascade.detectMultiScale(gray, 1.3, 5) 
  9.   
  10.     #脸部检测 
  11.     for (x,y,w,h) in faces: 
  12.         cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2) 
  13.         roi_gray = gray[y:y+h, x:x+w] 
  14.         roi_color = img[y:y+h, x:x+w] 
  15.         #检测视频中脸部的眼睛,并用vector保存眼睛的坐标、大小(用矩形表示) 
  16.         eyes = eye_cascade.detectMultiScale(roi_gray) 
  17.         #眼睛检测 
  18.         for (ex,ey,ew,eh) in eyes: 
  19.             cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2) 
  20.   
  21.     #显示原图像 
  22.     cv2.imshow('img',img) 
  23.     #按q键退出while循环 
  24.     if cv2.waitKey(30) & 0xFF == ord('q'): 
  25.         break  

退出while循环后释放摄像头,完成视频输出并关闭所有窗口。

 
  1. #释放摄像头 
  2. cap.release() 
  3. #关闭视频输出 
  4. out.release() 
  5. #关闭所有窗口 
  6. cv2.destroyAllWindows() 

以下是完整的人脸及眼睛检测代码:

 
  1. def face_eye(): 
  2.     import numpy as np 
  3.     import cv2 
  4.   
  5.     face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml'
  6.     eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml'
  7.   
  8.     cap = cv2.VideoCapture(0) 
  9.     fourcc = cv2.VideoWriter_fourcc(*'XVID'
  10.     out = cv2.VideoWriter('output.avi',fourcc, 20.0, (640,480)) 
  11.   
  12.     while(True): 
  13.         ret, img = cap.read() 
  14.         gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 
  15.         faces = face_cascade.detectMultiScale(gray, 1.3, 5) 
  16.   
  17.         for (x,y,w,h) in faces: 
  18.             cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),2) 
  19.             roi_gray = gray[y:y+h, x:x+w] 
  20.             roi_color = img[y:y+h, x:x+w] 
  21.             eyes = eye_cascade.detectMultiScale(roi_gray) 
  22.             for (ex,ey,ew,eh) in eyes: 
  23.                 cv2.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2) 
  24.   
  25.         cv2.imshow('img',img) 
  26.         if cv2.waitKey(30) & 0xFF == ord('q'): 
  27.             break 
  28.     cap.release() 
  29.     out.release() 
  30.     cv2.destroyAllWindows() 
  31.   
  32. face_eye()  


本文作者:佚名

来源:51CTO

这篇关于使用Python + OpenCV来实现脸部和眼睛的检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/230102

相关文章

Python判断for循环最后一次的6种方法

《Python判断for循环最后一次的6种方法》在Python中,通常我们不会直接判断for循环是否正在执行最后一次迭代,因为Python的for循环是基于可迭代对象的,它不知道也不关心迭代的内部状态... 目录1.使用enuhttp://www.chinasem.cnmerate()和len()来判断for

C#提取PDF表单数据的实现流程

《C#提取PDF表单数据的实现流程》PDF表单是一种常见的数据收集工具,广泛应用于调查问卷、业务合同等场景,凭借出色的跨平台兼容性和标准化特点,PDF表单在各行各业中得到了广泛应用,本文将探讨如何使用... 目录引言使用工具C# 提取多个PDF表单域的数据C# 提取特定PDF表单域的数据引言PDF表单是一

使用Python实现高效的端口扫描器

《使用Python实现高效的端口扫描器》在网络安全领域,端口扫描是一项基本而重要的技能,通过端口扫描,可以发现目标主机上开放的服务和端口,这对于安全评估、渗透测试等有着不可忽视的作用,本文将介绍如何使... 目录1. 端口扫描的基本原理2. 使用python实现端口扫描2.1 安装必要的库2.2 编写端口扫

PyCharm接入DeepSeek实现AI编程的操作流程

《PyCharm接入DeepSeek实现AI编程的操作流程》DeepSeek是一家专注于人工智能技术研发的公司,致力于开发高性能、低成本的AI模型,接下来,我们把DeepSeek接入到PyCharm中... 目录引言效果演示创建API key在PyCharm中下载Continue插件配置Continue引言

MySQL分表自动化创建的实现方案

《MySQL分表自动化创建的实现方案》在数据库应用场景中,随着数据量的不断增长,单表存储数据可能会面临性能瓶颈,例如查询、插入、更新等操作的效率会逐渐降低,分表是一种有效的优化策略,它将数据分散存储在... 目录一、项目目的二、实现过程(一)mysql 事件调度器结合存储过程方式1. 开启事件调度器2. 创

使用Python实现操作mongodb详解

《使用Python实现操作mongodb详解》这篇文章主要为大家详细介绍了使用Python实现操作mongodb的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、示例二、常用指令三、遇到的问题一、示例from pymongo import MongoClientf

SQL Server使用SELECT INTO实现表备份的代码示例

《SQLServer使用SELECTINTO实现表备份的代码示例》在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误,在SQLServer中,可以使用SELECTINT... 在数据库管理过程中,有时我们需要对表进行备份,以防数据丢失或修改错误。在 SQL Server 中,可以使用 SE

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

基于Go语言实现一个压测工具

《基于Go语言实现一个压测工具》这篇文章主要为大家详细介绍了基于Go语言实现一个简单的压测工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录整体架构通用数据处理模块Http请求响应数据处理Curl参数解析处理客户端模块Http客户端处理Grpc客户端处理Websocket客户端

浅析Rust多线程中如何安全的使用变量

《浅析Rust多线程中如何安全的使用变量》这篇文章主要为大家详细介绍了Rust如何在线程的闭包中安全的使用变量,包括共享变量和修改变量,文中的示例代码讲解详细,有需要的小伙伴可以参考下... 目录1. 向线程传递变量2. 多线程共享变量引用3. 多线程中修改变量4. 总结在Rust语言中,一个既引人入胜又可