BrainWeb: Simulated Brain Database使用(原图以及GroundTruth切片可视化)和矢状冠状横断面

本文主要是介绍BrainWeb: Simulated Brain Database使用(原图以及GroundTruth切片可视化)和矢状冠状横断面,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、BrainWeb数据集简介?
  • 二、使用步骤
    • 1.文件下载
    • 2.数据处理
    • GroundTruth


注:此篇文章参考脑图像的数据预处理
作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/
由于我在做实验时需要脑部横断面,矢状,冠状的原始图片,以及ground truth,
重新梳理BrainWeb数据集的使用。


一、BrainWeb数据集简介?

BrainWeb: Simulated Brain Database
http://brainweb.bic.mni.mcgill.ca/brainweb/
数据集选自McGill大学Montreal神经所大脑成像中心的Brain Web反震脑部MR图像数据库。该数据库包含基于两种解剖模型的模拟脑MRI数据:正常和多发性硬化(MS),并且提供了人工合成三种模态(T1-, T2-, PD-)下的三维脑MR图像。图像中包含不同的扫描厚度、噪声以及偏移场,最重要的是且该数据库对于所有脑MR图像均提供了标准分割结果
用户可对所需图片自定义进行下载:

  1. 模态 T1,T2,PD

  2. 协议 icmb

  3. 脑图像名字:正常

  4. 切片厚度 1mm,3mm,5mm,7mm,9mm

  5. 噪声水平 pn0=0%;1%,3%,5%,7%,9%

  6. 灰度不均匀水平 rf0=0%;20%,40%

二、使用步骤

1.文件下载

原始图片以ms病变脑数据库为例,模态= T1,协议= ICBM,幻像名称=正常,切片厚度= 1mm,噪声= 0%,INU = 0%:

groundtruth同样以以ms病变脑数据库为例

多发性硬化脑数据
在这里插入图片描述
在这里插入图片描述

下载好之后就可以处理数据了

2.数据处理

得到第90切片

function g = readrawb(filename, num)
%函数readrawb(filename, num)中的第一个参数filename是欲读取的rawb文件的文件名,第二个参数num就是第多少张。
fid = fopen(filename);
%连续读取181*217*181个数据,这时候temp是一个长度为181*217*181的向量。
%先将rawb中的所有数据传递给temp数组
temp = fread(fid, 181 * 217 * 181);
%然后把它变成了一个181*217*181的数组
images = reshape(temp, 181 , 217, 181);  
%获取图片大小[xrange, yrange, zrange] = size(images);
%   不同维度(切面)的图的第num张切片data_volume(1:xrange,1:yrange) = images(:,:,num);
%     data_volume(1:xrange,1:zrange) = images(:,num ,:);
%     data_volume(1:yrange,1:zrange) = images(num,:,:);
g = data_volume;
fclose(fid);
end
function init_image(filename,num)
pic_type='.png';
save_path='E:\BrainImages\Origin_MS\';
% 函数init_image(filename,num)中的第一个参数filename是欲读取的rawb文件的文件名,第二个参数num就是第多少张。输出为原始图像,未处理
%例如:init_image('t1_icbm_normal_1mm_pn0_rf0.rawb','train.txt',90)init_image('phantom_1.0mm_normal_csf.rawb','train.txt',90)
read=readrawb(filename, num);
% 旋转90°并显示出来
read=imrotate(read, 90);                                       
imshow(mat2gray(read));
imwrite(mat2gray(read),strcat(save_path,'origin_1_t3_90',pic_type));
end

命令行输入init_image('t1_ai_msles2_1mm_pn0_rf0.rawb', 90)即可获得结果
想要其他维度切片时只需将readrawb中的注释更改即可
在这里插入图片描述


GroundTruth

T1模态、icmb协议下,切片厚度为1mm,噪声水平为0,灰度不均匀水平为0的ms病变脑图像,第90层
只选取0、1、2、3、10类的数据,各类别官网有介绍
分割之后各类用以下像素值进行渲染:
0:0
1:50
2:150
3:255
10: 230

function Ground_truth(name, num)
%标准分割结果
%例如:Ground_truth('Ground truth.txt',90)
mark=Mark('phantom_1.0mm_msles2_crisp.rawb',num);
for i=1:181   %for j=1:217    %if mark(i,j)==1read_new(i,j)=50;elseif mark(i, j)==2read_new(i,j)=150;elseif mark(i, j)==3read_new(i,j)=255;elseif mark(i,j)==10;read_new(i,j)=230elseread_new(i,j)=0;endend
end
% 旋转90°并显示出来
read_new=imrotate(read_new, 90);
%mark=mark';
imshow(mat2gray(read_new));
pic_type='.png';
save_path='E:\BrainImages\GroundTruth\';
imwrite(mat2gray(read_new),strcat(save_path,'gt_1_t1_90',pic_type));
function mark=Mark(filename,num)
%将标签为12310类分出来,其余为0,mark取值:012310
%[mark_new,mark]=Mark('phantom_1.0mm_normal_crisp.rawb',90);
fp=fopen(filename);
temp=fread(fp, 181 * 217 * 181);
images=reshape(temp, 181 ,217, 181);  [xrange, yrange, zrange] = size(images);%不同方向的ground truthdata_volume(1:xrange,1:yrange) = images(:,:,num); %横截面
%     data_volume(1:xrange,1:zrange) = images(:,num ,:);%冠状
%     data_volume(1:yrange,1:zrange) = images(num,:,:);%矢状
mark_data=data_volume;
fclose(fp);
%将第012310类标签所在的坐标点拿出来,其余置0
for i=1:181for j=1:217if (mark_data(i,j)==1)||(mark_data(i,j)==2)||(mark_data(i,j)==3)||(mark_data(i,j)==10)mark(i,j)=mark_data(i,j);elsemark(i,j)=0;endend
end

运行Ground_truth('Ground truth.txt',90)
即可得到结果,同样,需要其他维度切片,更改Mask.m中的注释即可。
在这里插入图片描述

这篇关于BrainWeb: Simulated Brain Database使用(原图以及GroundTruth切片可视化)和矢状冠状横断面的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/228928

相关文章

Spring LDAP目录服务的使用示例

《SpringLDAP目录服务的使用示例》本文主要介绍了SpringLDAP目录服务的使用示例... 目录引言一、Spring LDAP基础二、LdapTemplate详解三、LDAP对象映射四、基本LDAP操作4.1 查询操作4.2 添加操作4.3 修改操作4.4 删除操作五、认证与授权六、高级特性与最佳

MySQL中动态生成SQL语句去掉所有字段的空格的操作方法

《MySQL中动态生成SQL语句去掉所有字段的空格的操作方法》在数据库管理过程中,我们常常会遇到需要对表中字段进行清洗和整理的情况,本文将详细介绍如何在MySQL中动态生成SQL语句来去掉所有字段的空... 目录在mysql中动态生成SQL语句去掉所有字段的空格准备工作原理分析动态生成SQL语句在MySQL

Qt spdlog日志模块的使用详解

《Qtspdlog日志模块的使用详解》在Qt应用程序开发中,良好的日志系统至关重要,本文将介绍如何使用spdlog1.5.0创建满足以下要求的日志系统,感兴趣的朋友一起看看吧... 目录版本摘要例子logmanager.cpp文件main.cpp文件版本spdlog版本:1.5.0采用1.5.0版本主要

Java中使用Hutool进行AES加密解密的方法举例

《Java中使用Hutool进行AES加密解密的方法举例》AES是一种对称加密,所谓对称加密就是加密与解密使用的秘钥是一个,下面:本文主要介绍Java中使用Hutool进行AES加密解密的相关资料... 目录前言一、Hutool简介与引入1.1 Hutool简介1.2 引入Hutool二、AES加密解密基础

MySQL中FIND_IN_SET函数与INSTR函数用法解析

《MySQL中FIND_IN_SET函数与INSTR函数用法解析》:本文主要介绍MySQL中FIND_IN_SET函数与INSTR函数用法解析,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友一... 目录一、功能定义与语法1、FIND_IN_SET函数2、INSTR函数二、本质区别对比三、实际场景案例分

使用Python将JSON,XML和YAML数据写入Excel文件

《使用Python将JSON,XML和YAML数据写入Excel文件》JSON、XML和YAML作为主流结构化数据格式,因其层次化表达能力和跨平台兼容性,已成为系统间数据交换的通用载体,本文将介绍如何... 目录如何使用python写入数据到Excel工作表用Python导入jsON数据到Excel工作表用

MySQL中的交叉连接、自然连接和内连接查询详解

《MySQL中的交叉连接、自然连接和内连接查询详解》:本文主要介绍MySQL中的交叉连接、自然连接和内连接查询,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、引入二、交php叉连接(cross join)三、自然连接(naturalandroid join)四

Mysql如何将数据按照年月分组的统计

《Mysql如何将数据按照年月分组的统计》:本文主要介绍Mysql如何将数据按照年月分组的统计方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql将数据按照年月分组的统计要的效果方案总结Mysql将数据按照年月分组的统计要的效果方案① 使用 DA

Mysql表如何按照日期字段的年月分区

《Mysql表如何按照日期字段的年月分区》:本文主要介绍Mysql表如何按照日期字段的年月分区的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、创键表时直接设置分区二、已有表分区1、分区的前置条件2、分区操作三、验证四、注意总结一、创键表时直接设置分区

mysql的基础语句和外键查询及其语句详解(推荐)

《mysql的基础语句和外键查询及其语句详解(推荐)》:本文主要介绍mysql的基础语句和外键查询及其语句详解(推荐),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录一、mysql 基础语句1. 数据库操作 创建数据库2. 表操作 创建表3. CRUD 操作二、外键